Real Exchange Rates and Primary Commodity Prices

by João Ayres, Constantino Hevia and Juan Pablo Nicolini

Discussion by Carlo Galli (University College London)

Salento Macro Meetings, August 29th 2019

The Paper

A long-standing puzzle

RERs are volatile, persistent, unrelated to fundamentals

This paper

- Shocks to PCPs can account for large fraction of RER variation
- Holds for developed countries, not just for "commodity" currencies
- Relationship robust, works out of sample
- Calibration of simple model matches key RER moments

Proposed mechanism

PCPs affect RER via pass-through from inputs to final goods prices

Discussion Outline

Review paper

- Context
- Empirics
- Theory

Ask two main questions

- test theory mechanism in the data
- quantitative performance of (extended) model

Exchange Rate Disconnect

$$RER_t := \frac{S_t P_t^*}{P_t}$$
 in logs: $rer_t = s_t + p_t^* - p_t$

RER puzzles:

- $1.~\approx$ random walk process, very persistent
- 2. very volatile, 10x more than macro fundamentals, mostly driven by E_t
- 3. not robustly correlated with fundamentals

Context

Classic arguments

- 1. Volatility driven by monetary/financial shocks + nominal rigidities
 - Financial shocks should die out in long-run, \neq high *RER* persistence
 - additional frictions in s_t pass-through:
 - trade barriers
 - home bias
 - pricing to market

Context

Classic arguments

- 1. Volatility driven by monetary/financial shocks + nominal rigidities
 - ▶ financial shocks should die out in long-run, \neq high *RER* persistence
 - additional frictions in s_t pass-through:
 - trade barriers
 - home bias
 - pricing to market
- 2. Persistence driven by real shocks
 - real shocks hardly volatile enough to explain short-term fluctuations

Context

Classic arguments

- 1. Volatility driven by monetary/financial shocks + nominal rigidities
 - ▶ financial shocks should die out in long-run, \neq high *RER* persistence
 - additional frictions in s_t pass-through:
 - trade barriers
 - home bias
 - pricing to market
- 2. Persistence driven by real shocks
 - real shocks hardly volatile enough to explain short-term fluctuations
 - this paper: PCPs are volatile and persistent real shocks!

Empirical Result

Estimate

$$rer_t^{US,j} = \eta' \mathbf{pcp}_t^{US} + u_t$$

Empirical Result

Estimate

$$rer_t^{US,j} = \eta' \mathbf{pcp}_t^{US} + u_t$$

	1960-2014	1960 - 1972	1973 - 1985	1986-1998	1999 - 2014			
(a) 10 commodities, 4-year differences								
United Kingdom	0.48	0.90	0.90	0.81	0.60			
Germany	0.63	0.95	0.87	0.83	0.75			
Japan	0.57	0.92	0.84	0.92	0.82			
(b) 4 commodities (best fit), 4-year differences								
United Kingdom	0.33	0.72	0.82	0.63	0.58			
Germany	0.56	0.84	0.87	0.81	0.74			
Japan	0.48	0.88	0.76	0.86	0.80			

Empirical Result

Estimate

$$rer_t^{US,j} = \eta' \mathbf{pcp}_t^{US} + u_t$$

	1960 - 2014	1960 - 1972	1973 - 1985	1986-1998	<u>1999–2014</u>				
(a) 10 commodities, 4-year differences									
United Kingdom	0.48	0.90	0.90	0.81	0.60				
Germany	0.63	0.95	0.87	0.83	0.75				
Japan	0.57	0.92	0.84	0.92	0.82				
(b) 4 commodities (best fit), 4-year differences									
United Kingdom	0.33	0.72	0.82	0.63	0.58				
Germany	0.56	0.84	0.87	0.81	0.74				
Japan	0.48	0.88	0.76	0.86	0.80				

Works well out of sample

Robust to parametric bootstrap test of orthogonality

CPI decomposition

- Typically, on final goods $p_t = (1 \alpha)p_t^T + \alpha p_t^N$
- ► Write RER as

$$rer_{t} = \overbrace{s_{t} + p_{t}^{T*} - p_{t}^{T}}^{\text{Tradable component}} + \overbrace{\alpha^{*}(p_{t}^{N*} - p_{t}^{T*}) - \alpha(p_{t}^{N} - p_{t}^{T})}^{\text{Relative }T-N \text{ Price}}$$

CPI decomposition

- Typically, on final goods $p_t = (1 \alpha)p_t^T + \alpha p_t^N$
- ► Write RER as

$$rer_{t} = \overbrace{s_{t} + p_{t}^{T*} - p_{t}^{T}}^{\text{Tradable component}} + \overbrace{\alpha^{*}(p_{t}^{N*} - p_{t}^{T*}) - \alpha(p_{t}^{N} - p_{t}^{T})}^{\text{Relative }T-N \text{ Price}}$$

Here

- ► CPI decomposition on **inputs**: $p_t = (1 \gamma)p_t^{PC} + \gamma p_t^{OI}$
- PCPs satisfy LOP: $s_t + p_t^{PC*} = p_t^{PC}$
- Write RER as:

 $rer_{t} = \overbrace{\gamma^{*}(p_{t}^{OI*} - p_{t}^{PC*}) - \gamma(p_{t}^{OI} - p_{t}^{PC})}^{\text{Relative PC-OI Price}}$

CPI decomposition

- Typically, on final goods $p_t = (1 \alpha)p_t^T + \alpha p_t^N$
- Write RER as

$$rer_{t} = \overbrace{s_{t} + p_{t}^{T*} - p_{t}^{T}}^{\text{Tradable component}} + \alpha^{*}(p_{t}^{N*} - p_{t}^{T*}) - \alpha(p_{t}^{N} - p_{t}^{T})$$

Here

- ► CPI decomposition on **inputs**: $p_t = (1 \gamma)p_t^{PC} + \gamma p_t^{OI}$
- PCPs satisfy LOP: $s_t + p_t^{PC*} = p_t^{PC}$

Write RER as:

$$rer_t = \overbrace{\gamma^*(p_t^{OI*} - p_t^{PC*}) - \gamma(p_t^{OI} - p_t^{PC})}^{\text{Relative PC-OI Price}}$$

Rearrange

$$\textit{rer}_t = \gamma^* \textit{s}_t + (\gamma - \gamma^*) \textit{p}_t^{\textit{PC}} + \gamma^* \textit{p}_t^{\textit{OI}*} - \gamma \textit{p}_t^{\textit{OI}*}$$

CPI decomposition

- Typically, on final goods $p_t = (1 \alpha)p_t^T + \alpha p_t^N$
- Write RER as

$$rer_{t} = \overbrace{s_{t} + p_{t}^{T*} - p_{t}^{T}}^{\text{Tradable component}} + \alpha^{*}(p_{t}^{N*} - p_{t}^{T*}) - \alpha(p_{t}^{N} - p_{t}^{T})$$

Here

- ► CPI decomposition on **inputs**: $p_t = (1 \gamma)p_t^{PC} + \gamma p_t^{OI}$
- PCPs satisfy LOP: $s_t + p_t^{PC*} = p_t^{PC}$

Write RER as:

$$rer_t = \overbrace{\gamma^*(p_t^{OI*} - p_t^{PC*}) - \gamma(p_t^{OI} - p_t^{PC})}^{\text{Relative PC-OI Price}}$$

Rearrange

$$rer_t = \gamma^* s_t + (\gamma - \gamma^*) p_t^{PC} + \gamma^* p_t^{OI*} - \gamma p_t^{OI}$$

 \Rightarrow test for unobserved factor, common to p_t^{PC} and rer_t

Model Testable Implications

- Empirical result: rer_t and p_t^{PC} are correlated...
- ▶ Theory: ...via pass-through input prices \rightarrow CPI
 - real common factors = shocks to commodity endowments & TFP
 - $\triangleright rer_t = s_t + p_t^* p_t$
- Calibration shows theory can work quantitatively
 - replicates moments of RER
 - without large movements in quantities

Model Testable Implications

- Empirical result: rer_t and p_t^{PC} are correlated...
- \blacktriangleright Theory: ...via pass-through input prices \rightarrow CPI
 - real common factors = shocks to commodity endowments & TFP
 - $\triangleright rer_t = s_t + p_t^* p_t$
- Calibration shows theory can work quantitatively
 - replicates moments of RER
 - without large movements in quantities
- Q Can we test theory implications further?
 - model is real and static, mechanism goes through CPI
 - producer prices, commodity-heavy price categories
 - how far could full dynamic model go in explaining remaining menu of puzzles?

Financial Shocks

- Itskhoki and Mukhin (2019)
 - Financial (UIP) shocks $\rightarrow s_t$ more volatile than macro variables
 - no direct effect on product/labour markets
 - \blacktriangleright muted pass-through to CPI & output \rightarrow "disconnect"

Financial Shocks

- Itskhoki and Mukhin (2019)
 - financial (UIP) shocks $\rightarrow s_t$ more volatile than macro variables
 - no direct effect on product/labour markets
 - muted pass-through to CPI & output \rightarrow "disconnect"
- A quick experiment: Credit Default Swaps

Financial Shocks

- Itskhoki and Mukhin (2019)
 - financial (UIP) shocks $\rightarrow s_t$ more volatile than macro variables
 - no direct effect on product/labour markets
 - muted pass-through to CPI & output \rightarrow "disconnect"
- A quick experiment: Credit Default Swaps

Q What are the common factors driving PCPs and RER? Real or financial?

Conclusion

Great paper: clear question, solid result, provocative conclusion

Two main comments

- test implications of the theory
- quantitative performance in extended model