Asymmetric Information and Sovereign Debt: Theory Meets Mexican Data by Harold Cole, Daniel Neuhann and Guillermo Ordoñez

Discussion by Carlo Galli (Sciences Po)

BGSE SF Information Asymmetries in Financial Markets: Applications to Macro and Finance

June 18th 2021

The paper in a nutshell

Novel (awesome) dataset, Mexico short-term treasury auctions 2001-17

"Surprising" empirical facts: largest buyer at auction has (vs. rest)

- much higher fill ratios
- no significant difference in cost (overpayment)
- Model
 - wealth or risk heterogeneity don't work
 - asymmetric information accounts for the facts
 - rare disasters distribution performs best quantitatively

Brilliant paper! Cool data, clear motivation, tight model and exposition

Empirical Motivation

Define

• "Winner" \equiv bidder with highest *level* of filled orders

• "Overpayment" $\equiv \frac{AP_i}{MP_i}$

Facts on averages

fill ratio(winner) > fill ratio(rest)

▶ overpayment(winner) ≈ overpayment(rest)

Model in One Slide

Assumptions

- Discriminatory-price auction
- Expected payoff of bond is $(1 \kappa) P$

▶ *n* informed agents know κ , (1 - n) uninformed think $\begin{cases} \kappa_g \text{ w.p. } f_g \\ \kappa_b \text{ w.p. } (1 - f_g) \end{cases}$

Market clearing

$$nP^iB^i + (1-n)\sum_j P^u_jB^u_j = D$$

Consider risk neutrality:

- ▶ Informed are indifferent at $P(\kappa) = 1 \kappa \rightarrow$ Informed always (pay MP, buy) in both states
- Uniformed only buy "high" if $P(\kappa_g) = 1 \bar{\kappa} \rightarrow \text{Uninformed (pay MP, buy) only if } \kappa = \kappa_b$

With risk aversion $ightarrow P(\kappa_g) \uparrow n$

Illustration

Data

Pro: much larger sample size than literature

	Country	No. Maturities	Size	Period
Hortaçsu Kastl Zhang (AER 2018)	US	8	<i>n_m</i> < 222	2009-13
Hortaçsu McAdams (JPE 2010)	Turkey	1	n = 130	1991-93
Hortaçsu Kastl (ECTA 2012)	Canada	2	$n_m = 116$	1998-03
this paper	Mexico	4	$n_m pprox 800$	2001-17

Contra:

- no bidder information or tracking
- regime changes?

"Slicing" the data

Authors choose to focus on largest buyers, fill ratios, average overpayment Data is very rich, can we learn more?

6/9

Bidders' identities (Hortaçsu Kastl Zhang (AER 2018))

Maturity	Bid			Within auction SD[Bid]		Percent of issue size			Percent of tender won			
	Primary	Direct	Indirect	Primary	Direct	Indirect	Primary	Direct	Indirect	Primary	Direct	Indirect
CMBs	0.1501	0.1389	0.1185	0.0244	0.0201	0.0223	19	5	3	21	36	64
4 week	0.0943	0.0699	0.0463	0.0254	0.0337	0.0266	18	3	2	19	52	84
13 week	0.1119	0.0866	0.0683	0.0248	0.0332	0.0249	19	3	2	19	54	84
26 week	0.165	0.1368	0.1254	0.0275	0.0391	0.0272	20	4	2	16	52	71
52 week	0.2617	0.2356	0.227	0.0299	0.0333	0.017	17	4	2	20	47	67
2 year	0.5604	0.5231	0.4927	0.0397	0.046	0.0939	13	4	1	22	42	70
5 year	1.5627	1.4902	1.4384	0.0682	0.0631	0.1244	10	3	1	24	55	82
10 year	2.7229	2.6482	2.5906	0.0732	0.0706	0.192	11	3	1	21	50	71

TABLE 2—DESCRIPTION OF BIDS

Notes

- Primary = primary dealers; Direct \approx other banks; Indirect = funds via primary dealers
- stdev is across bidders; percent of issue size related to bids submitted
- Uniform price auction!

More Questions

1. Cetes data

Is there a size-price-bidding behaviour relationship?

2. Are all bidders price-takers?

Paper discusses wealth/size heterogeneity

but maintains price-taking assumption

HKZ18 find evidence of bid shading

- primary dealers bid lower because of market power, given valuation
- valuation includes information advantage due to bid intermediation

Conclusion

Super interesting paper

Great data (thank you, Daniel!)

Brings primary auctions (divisible good + discriminatory pricing) to sovereign default + time series dimension

Tractable model, very clear explanation of results and mechanisms