Central Bank Balance Sheet Policies Without Rational Expectations by Luigi lovino and Dmitriy Sergeyev

Discussion by Carlo Galli (University College London)

Salento Macro Meetings, August 28 2018

The Paper

CB balance sheet policies (QE & FX interventions)

- Empirics: debated yet relevant effects on asset prices
- Theory: policy is irrelevant in a frictionless world (Wallace (1981))

Friction: bounded rationality (level-k thinking)

Main results:

- 1. Level-k thinking makes policy relevant, in various settings
- 2. Generates forecast errors related to policy \rightarrow consistent with data

Bounded rationality: what is level-k thinking?

\blacktriangleright Asset pricing application \rightarrow 2 questions to be asked

- 1. Micro: how does it work, what do we learn?
- 2. Macro: is the application appropriate?

Level-k Thinking in Beauty Contests

- Nash equilibrium implies
 - agents have a high degree of rationality
 - agents assume others have a high degree of rationality
- Many experimental results violate this

Level-k Thinking in Beauty Contests

Nash equilibrium implies

- agents have a high degree of rationality
- agents assume others have a high degree of rationality
- Many experimental results violate this

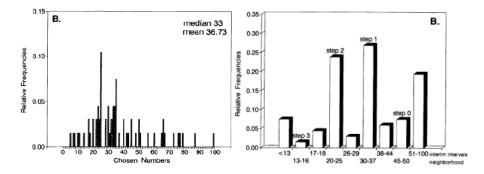
p-Beauty Contest game

- ▶ *N* players, each picks a number $s_i \in \{1, 2, ..., 100\}$
- closest to $p imes rac{\sum_i s_i}{N}$ wins, with $p \in (0,1)$

iterated deletion of dominated strategies:

- 1. even if all play 100, I should guess $p \times 100$
- 2. if all play $p \times 100$, I should guess $p^2 \times 100$
- 3. and so on... \rightarrow Nash Eqm is 1

p=2/3 Beauty Contest Game



Nagel (1995)

- if people play at (uniform) random \rightarrow 50 (level-0, non-strategic)
- ▶ if people best-respond to level-0 \rightarrow 33 (level-1)
- ▶ if people best-respond to level-1 \rightarrow 22 (level-2)
- and so on...

Asset Prices and Balance Sheet Policies

Infinite horizon t = 1, 2, ...

Markets

- ▶ risky asset, pays $r_{t+1}^{x} \sim N(r^{x}, \sigma^{2})$ each period, fixed supply \bar{X}
- risk-free asset in infinite supply with gross return R

Agents

• have CARA utility $U(c_{t+1}) = -e^{-\gamma c_{t+1}}$

> OLG, agents live 2 periods, born with (w), consume only when old

$$c_{t+1} - wR = \underbrace{(r_{t+1}^{x} + q_{t+1} - q_{t}R)}_{\mathcal{R}_{t+1}} x_{t+1} - T_{t+1}$$

Government

▶ finances risky-asset purchases with risk-free debt $\rightarrow B_{t+1} = q_t X_{t+1}^{G}$

transfers profits to old agents

$$-T_{t+1} = \mathcal{R}_{t+1} X_{t+1}^{\mathsf{G}}$$

Asset Prices and Balance Sheet Policies

Infinite horizon t = 1, 2, ...

Markets

- ▶ risky asset, pays $r_{t+1}^{x} \sim N(r^{x}, \sigma^{2})$ each period, fixed supply \bar{X}
- risk-free asset in infinite supply with gross return R

Agents

• have CARA utility $U(c_{t+1}) = -e^{-\gamma c_{t+1}}$

> OLG, agents live 2 periods, born with (w), consume only when old

$$c_{t+1} - wR = \underbrace{(r_{t+1}^{X} + q_{t+1} - q_{t}R)}_{\mathcal{R}_{t+1}}(x_{t+1} + X_{t+1}^{G})$$

Government

▶ finances risky-asset purchases with risk-free debt $\rightarrow B_{t+1} = q_t X_{t+1}^{G}$

transfers profits to old agents

$$-T_{t+1} = \mathcal{R}_{t+1} X_{t+1}^{\mathsf{G}}$$

Rational Expectations Equilibrium

► CARA-Normal \Rightarrow mean-variance maximization

$$x_{t+1} = \frac{E_t(\mathcal{R}_{t+1})}{\gamma \mathsf{Var}(\mathcal{R}_{t+1})} - X_{t+1}^{\mathsf{G}} \quad \rightarrow \quad q_t^{\mathsf{REE}} = \left(q_{t+1}^{\mathsf{REE}} + r^{\mathsf{x}} - \gamma \sigma^2 \bar{X}\right) / R$$

REE price is present expected value of risk-adjusted dividends,

$$q^{REE} = \frac{r^{x} - \gamma \sigma^{2} \bar{X}}{R - 1}$$

▶ $q^{REE} \perp \{X_t^G\}_{t \ge 0}$: QE crowds out private investment

Status-quo: no QE ($T_t = 0, X_t^G = 0 \forall t$)

• At t = 0, one-period QE announcement: $X_3^G > 0 \rightarrow T_3 = -\mathcal{R}_3 X_3^G$

policy is known to all k-types

(k = 1)

agents' beliefs = status-quo eqm distribution

$$\blacktriangleright \quad \tilde{E}_t^{k=1}(q_{t+1}) = q_{t+1}^{REE}, \quad \text{still} \ T_3 = 0$$

▶ asset demand in t = 2

$$x_3^{k=1} = rac{ ilde{E}_t^{k=1}(\mathcal{R}_3)}{\gamma \mathsf{Var}(\mathcal{R}_3)}$$

Status-quo: no QE ($T_t = 0, X_t^G = 0 \forall t$)

At t = 0, one-period QE announcement: $X_3^G > 0 \rightarrow T_3 = -\mathcal{R}_3 X_3^G$

policy is known to all k-types

 $(\mathbf{k} = \mathbf{1})$

agents' beliefs = status-quo eqm distribution

•
$$\tilde{E}_t^{k=1}(q_{t+1}) = q_{t+1}^{REE}$$
, still $T_3 = 0$

$$x_3^{k=1} = rac{ ilde{E}_t^{k=1}(\mathcal{R}_3)}{\gamma \mathsf{Var}(\mathcal{R}_3)}$$

 \blacktriangleright k = 1 temporary eqm prices

$$q_2^{k=1} = \frac{q^{REE} + r^x - \gamma \sigma^2 (\bar{X} - \underline{X}_3^G)}{R} = q^{REE} + \frac{\gamma \sigma^2 \underline{X}_3^G}{R}$$
$$q_{t<2}^{k=1} = q^{REE}$$

(k = 2)

> agents beliefs = eqm distribution if everyone is (k = 1)

•
$$\tilde{E}_1^{k=2}(q_2) = q_2^{k=1}$$

understand taxes are risky:

$$T_3 = -\mathcal{R}_3^{k=1}X_3^G, \quad x_3^{k=2} = \frac{\tilde{E}_t^{k=1}(\mathcal{R}_3)}{\gamma \mathsf{Var}(\mathcal{R}_3)} - X_3^G$$

 \blacktriangleright k = 2 temporary eqm prices

$$q_2^{k=2} = q^{REE} \qquad \perp X_3^G$$

(**k** = **2**)

> agents beliefs = eqm distribution if everyone is (k = 1)

•
$$\tilde{E}_1^{k=2}(q_2) = q_2^{k=1}$$

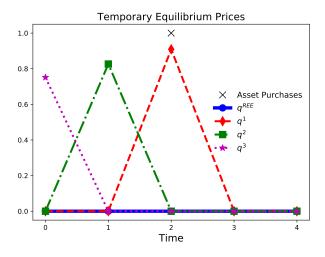
understand taxes are risky:

$$T_3 = -\mathcal{R}_3^{k=1}X_3^G, \quad x_3^{k=2} = \frac{\tilde{E}_t^{k=1}(\mathcal{R}_3)}{\gamma \mathsf{Var}(\mathcal{R}_3)} - X_3^G$$

 \blacktriangleright k = 2 temporary eqm prices

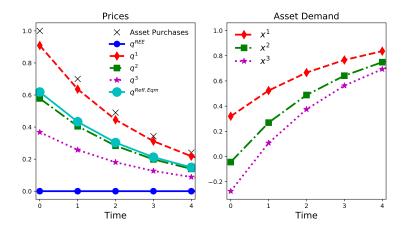
$$\begin{aligned} q_2^{k=2} &= q^{REE} \qquad \perp X_3^G \\ q_1^{k=2} &= \frac{q_2^{k=1} + r^x - \gamma \sigma^2 \bar{X}}{R} = q^{REE} + \frac{\gamma \sigma^2 X_3^G}{R^2} \end{aligned}$$

To simplify, let risk-adjusted expected dividend $(r^x - \gamma \sigma^2 \bar{X}) = 0$

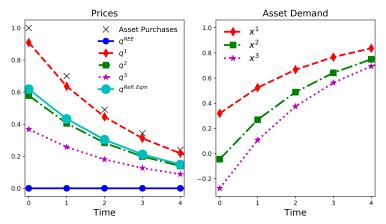


 \Rightarrow t=0 effect of X^{G}_{t} only for k=t agents

Reflective Equilibrium, multi-period QE ($X_t = \delta^{t-1}$)



Discussion



Comments

- 1. **k-type distribution assumed constant over time**. What if *k*-types are long-lived?
 - lower $k \rightarrow \text{largest positions/risks}$
 - \blacktriangleright with exit, mass \uparrow and QE effect weaker \approx effects of learning in paper

Discussion

- 2. k believes everyone else is k 1: strong "illusory superiority"
 - what if agents know the type distribution?

3. $k \geq 2 \text{ get } \mathsf{Cov}(\mathcal{R}_{t+1}, \mathsf{T}_{t+1}) \text{ perfectly}$

- ▶ no within-period QE effects for $k \ge 2$
- \blacktriangleright \neq Fahri and Werning (2016), Garcia-Schmidt and Woodford (2015)
- static beauty contest pprox dynamic sequential trading?
- 4. Gov't agencies large players in mortgage market for decades
 - are gov't balance sheet policies really novel for mkt participants?
 - Fieldhouse et al. (2018)

Bottomline

Nice, clear, novel asset pricing application of level-k expectations

Application hinges on restrictions within level-k thinking
results somewhat robust to learning and (some) rational agents

Choice of bounded rationality/information friction
empirical justification from forecast errors seems right way to go