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Abstract

We study how Asset Purchase (AP) policies affect the real price of defaultable nominal
bonds, accounting for the effect on inflation through the central bank balance sheet. In
the context of noisy financial markets where investors have position limits and private
information on default probabilities, APs twist the distribution of equilibrium prices from
which investors learn and effectively reduce real returns. In the absence of fiscal backing
from the treasury, APs however create inflation through their effect on the real value of
the central bank balance sheet. We study the social efficiency of AP policies in a stylized
heterogeneous agents model, where lower bond returns and higher inflation have offsetting
effects on aggregate consumption and welfare. We find that a positive but finite amount of
APs optimally balances this trade-off, when we restrict to simple, uncontingent AP policies.
We then show that policies that target a specific asset price can reduce interest rates while
minimizing inflation pressures, even when the central bank lacks fiscal backing or has the
same information as the market.
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1 Introduction

The most significant change in monetary policy over the last decade is the persistent use of large-

scale asset purchases (APs), also known as quantitative easing (QE). Central banks introduced

this unconventional policy to overcome the zero lower bound on overnight rates and reduce long-

term yields. APs also played a macroprudential role, stabilizing sovereign bond markets and

mitigating large and sudden shocks such as Covid-19. In the Eurozone, they were used to fight

financial fragmentation and speculative attacks. Despite their practical importance, economists

continue to debate the effectiveness of QE. As Ben Bernanke famously remarked, “QE works in

practice but not in theory”.1

This paper provides a general equilibrium analysis of the social efficiency of APs, and the

channels through which they work, explicitly accounting for the noisy nature of the financial

markets in which it operates. We consider a setting where investors only have noisy information

on the fundamental value of an asset, and take advantage of the information aggregated by

the price emerging upon trade; for example, a price increase may convey the information that

either other investors have positive private news about fundamentals, or that the unobservable

part of the asset net supply is small. AP policies may affect such inference, even when publicly

announced, in that they twist the mapping between market prices and asset supply, conditional

on fundamentals.

Our contribution is twofold. First, we study this mechanism in the context of a financial

market where nominal defaultable debt is traded. We characterize the impact of APs on the real

price of bonds, i.e. accounting for the general equilibrium implications that APs have on inflation,

via the balance sheet of the central bank. Second, we provide insights on the optimal AP policy

relying on a stylized model of fiscal-monetary interactions where APs reduce inefficiently high

interest rates, at the cost of generating socially harmful inflation.

We consider a two-period model where the players are a government, a central bank, and

households. The government issues nominal, defaultable bonds in the short run (first period) to

finance its stochastic spending needs, and eventually repays such debt in the long run (second

period) by raising non-distortionary taxes, whose real value depends on bond interest rates as

well as inflation. Repayment is a stochastic event that follows an exogenous lottery. The central

bank issues money, whose long-run real value depends on that of its invested assets. The proceeds

1See Bernanke (2012).
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of money issuance can be invested in a safe asset2 or in government bonds.3 The central bank

may or may not receive fiscal backing of its balance sheet by the government. In particular,

central bank and government interact in a regime of monetary dominance when fiscal transfers

are set such that the value of the central bank’s balance sheet is kept constant; in a regime of

fiscal dominance instead, such transfers are absent, and a default event may affect the value of

the central bank balance sheet depending on its AP policy.

The private sector consists of households holding an endowment that can be consumed in

the first period, or saved and consumed in the second period. Agents are born of two types,

only differing in which asset they can use in order to save: savers can only invest in money,

whereas investors can invest in either bonds or the safe asset. Both types need to decide how

much to consume and save in the first period before they learn any information. Once savings

are set, investors receive private information on the default lottery, and decide how to allocate

their portfolio between bonds and safe assets within a Bayesian trading game. In the trading

game, investors face bounds on their short positions, and learn from the market-clearing bond

price. Such price aggregates information about everyone’s private signals, but also depends on

some unobserved, stochastic supply. Investors thus face an inference problem, as they cannot

tell apart whether, for example, the bond price is high because of low supply or high demand.

In the modelling of financial markets, we adopt a framework closely related to Hellwig et

al. (2006), Albagli et al. (2021) and the sovereign debt application of Bassetto and Galli (2019),

where the assumption of investors’ risk neutrality and position limits allows considering nonlinear

asset payoffs (such as that of defaultable debt). This class of models features an extensive margin

mechanism, where the equilibrium price depends on the beliefs of the marginal agent, that is, the

agent who is indifferent between buying government debt or investing in the alternative assets.4

If either heterogeneous information or position bounds are absent from the investors’ portfolio

allocation problem, we get a neutrality result as in Wallace (1981): there is no difference between

money and bonds, the distinction between agent types is immaterial, and APs have no effect on

bond prices, inflation or welfare. When instead both frictions are present, we show that APs have

pervasive effects on bond prices, the information contained therein, and anything linked to such

prices, specifically the central bank balance sheet, inflation, the consumption-saving decisions of

2This can be interpreted as a perfectly diversified portfolio, or a storage technology.
3Although we do not explicitly model the possibility that the central bank buys private assets, nothing prevents

us from interpreting the government as the consolidated public sector.
4This contrasts with the key mechanism in the vast CARA-Normal noisy REE literature, where equilibrium

prices depend on the risk premium priced by risk-averse investors that solve a risk-return trade-off problem. See
for example Iovino and Sergeyev (2023) for an application of this framework to APs.
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households, and welfare. We now briefly discuss these effects.

First, APs affect bond prices, and their mapping with fundamentals and supply shocks. When

conducting APs, the central bank buys at the market price, crowding out the bond demand of

a specific part of the investor distribution, that is, the least optimistic investors among those

that would otherwise buy the bonds. This increases the market probability of repayment, by

selecting a more optimistic investor as the marginal agent that is pricing the bond, which results

in a lower bond interest rate (higher price).

Second, APs increase the precision of the information revealed by financial market prices. We

show that this takes the form of a truncation in the distribution of investors’ posterior beliefs

on the fundamental. This result, for which we find general conditions, extends the analysis of

noisy information aggregation in financial market by allowing for truncated belief distributions,

being a theoretical contribution per se. This belief truncation is typically asymmetric, allowing

investors to better detect default states. Intuitively, when APs are large and investors observe a

high bond price, they cannot tell if that is because the government is indeed solvent, or prices

are just inflated by central bank purchases. When instead APs are large and bond prices are low,

investors infer that the government must be close to a default, since the price remained low even

after the central bank intervened. This implies that APs render some prices fully informative

of the underlying fundamental, thus eliminating all residual uncertainty in the corresponding

states.

Third, APs reduce the ex ante expected value of the profits (excess returns of bonds over

the safe asset) that investors make when saving and participating in the bond market. With

dispersed information, agents expect to make positive profits, because they anticipate facing a

call option in the bond market: if they receive a good private signal, they take on default risk

and buy bonds, if not, they just save in the safe asset. This is a source of inefficiency, because

it induces investors to save too much and consume too little in the first period. APs reduce

these expected profits, stimulate consumption and increase welfare by reducing bond returns

and revealing information in states where investors earn the most.

Fourth, in the presence of fiscal dominance, APs introduce correlation between the returns of

bond and money. The long-run real value of central bank liabilities (i.e. money) depends on the

real value of its investments. When the central bank invests in bonds, a default event implies

a balance sheet loss that depresses the long-run real value of money and generates inflation; on

the contrary, when government debt is repaid, the central bank makes a profit that generates

long-run deflationary pressures. This simple result sheds light on the empirical observation that

APs do not necessarily lead to inflationary pressure; on the contrary, deflation is an outcome
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that is perfectly consistent with the central bank investing in assets that increase the value of

its liabilities. Under a simple “uncontingent” AP rule where the central bank always buys a

fixed quantity of bonds, APs generate expected central bank losses and inflation. In our setting,

inflation is costly for savers because it depresses the rate of return on their investment, money,

below its efficient level. Hence, a trade-off emerges: on the one hand, APs reduce inefficiently high

return for investors and increase their consumption; on the other hand, APs increase inflation,

make the rate of return on money inefficiently low, and reduce savers’ consumption. We show

that the optimal uncontingent AP policy is to buy a positive but finite amount of bonds, trading

off the welfare gains for investors with the losses for savers.

Finally, we study a more sophisticated yet tractable class of AP policies that target a specific

bond interest rate. These policies are implemented as limit orders by the central bank to buy up

to a certain quantity of bonds if the price is weakly smaller than a given target. Importantly, this

class of polices does not require the central bank to know the fundamental shocks in the economy,

or to have information that is superior to that of investors. We show that price-targeting policies

have two important features: first, they are “beliefs-neutral”, in the sense that they do not

distort the information contained in the price, and actually correct a wedge that derives from

the presence of information frictions; second, they are “budget-neutral”, because we set a price

target such that APs result in zero expected profits or losses for the central bank. This implies

that, with this class of policies, the central bank can reduce interest rates and increase investors’

consumption, while minimizing the drawback of creating costly inflation for savers.

Related Literature. Since Wallace (1981), the irrelevance of open market operations has

been a benchmark theoretical result in rational expectation macroeconomic models. It states

that, taking fiscal policy as given, any purchase of assets by public authorities is allocation-neutral

insofar as taxes adjust to offset any gain or loss in public budgets. Thus, the composition of public

liabilities does not matter, similarly to what Modigliani and Miller (1958) show for corporate

liabilities.

Wallace’s irrelevance result crucially obtains under complete information and frictionless fi-

nancial markets. A literature questioning the complete information assumption focused on the

role of APs to serve as a signal about uncertain central banks’ objectives and fundamentals (see

Mussa (1981)) or as a commitment device to future accommodative stance (Jeanne and Svensson

(2007), Christensen and Rudebusch (2012) and Bhattarai et al. (2022)). Recent work by Iovino

and Sergeyev (2023) focuses on the lack of rational expectations as a source of non-neutrality of

APs in an otherwise frictionless model. A larger stream of literature has emphasized the impor-

tance of market segmentation for the workings of AP policies, in the vein of seminal papers like
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Cúrdia and Woodford (2011) and Gertler and Karadi (2015).5 Some papers have emphasized the

role of asset purchases in incomplete markets economies with structurally heterogeneous agents

in alleviating a lack of risk sharing or insurance on the side of firms or households.6

To the best of our knowledge, this is the first paper showing the role of dispersed information

in economies where structurally homogeneous investors take bounded positions. In particular,

we show that absent one of these two frictions – private uncertainty or bounded asset demand

– the neutrality benchmark obtains. In our model, positions bounds prevent private demand to

perfectly offset the heterogeneous crowding-out effect of APs, which has effects on the asset price

and the information private agents extract from it.

Such absence of perfect private arbitrage echoes the assumption of market segmentation that

is common in the finance literature on asset purchases. Market segmentation is essential for

APs to induce “portfolio rebalancing” effects, i.e. a relative price change across asset classes

and maturities. These effects have been measured since the great recession of 2008-2009 in a

flourishing empirical literature.7 Some works support the view that asset purchases have mostly

a “local” effect limited to the specific market targeted by the program.8 Others have identified

sizeable “global” portfolio rebalancing effects that pervade financial markets beyond those that

are targeted directly by the program.9

On the theoretical front, the literature has developed models to account for the “local”

vs. “global” effects of asset purchases on financial markets, building on the seminal paper by

Vayanos and Vila (2021) (see for example Hamilton and Wu (2012), Greenwood and Vayanos

(2014), King (2013) and King (2019)). All these papers focus on the financial market impact

of APs, abstracting from their general equilibrium implications on inflation and macroeconomic

risks. An applied macro literature found robust evidence for expansionary general equilibrium

effects of asset purchases.10

5See for example Chen et al. (2012), Del Negro et al. (2017), Wen (2014), Campbell et al. (2012), Harrison
(2017) and Sims and Wu (2021).

6See for example Gornemann et al. (2016), Auclert (2019), Luetticke (2018), Ravn and Sterk (2021), Kaplan
et al. (2018), Debortoli and Gaĺı (2017), Hagedorn et al. (2019) and Cui and Sterk (2021).

7See Gagnon et al. (2011) for the US; Joyce et al. (2012) and Breedon et al. (2012) for the UK, and more
recently Koijen et al. (2021) and Altavilla et al. (2021) for the Eurozone, among others.

8See Krishnamurthy and Vissing-Jorgensen (2011), D’Amico and King (2013), and McLaren et al. (2014) on
Fed LSAPs; Eser and Schwaab (2016) for the ECB Securities Markets Programme (SMP); Altavilla et al. (2016)
for the ECB Outright Monetary Transactions (OMT); Krishnamurthy et al. (2017), Koijen et al. (2017) and
Arrata et al. (2020) for various ECB AP programs.

9E.g. Cahill et al. (2013), Li and Wei (2013), Gilchrist et al. (2015) and Rogers et al. (2018).
10See Bhattarai and Neely (2016) and Kim et al. (2020) for a survey of the literature.
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2 Model

There are two periods t ∈ {1, 2}. In the first period, a continuum of agents chooses how much

endowment to allocate to current consumption rather than savings in a asset. Agents are of

two types, each sizing mass one, that differ in the saving assets they have access to. Savers can

only save in money, Investors can choose between a safe return asset and a defaultable nominal

bond issued by the government. In the second period, once the consumption-saving choice had

been made, investors receive a private signals on the likelihood of default, see the market price of

bonds and decide how to compose their portfolio. At the end of the second period, non-defaulted

bonds and money are reimbursed, consumers pay lump-sum taxes and lastly consume.

The public sector consists of a government and a central bank, both implementing rules or

the conduct of fiscal and monetary policies. In the first period, the government issues bonds

to finance consumption and the central bank issues money and implements APs of government

bonds. In the second period, government default may occur or not depending on the outcome

of an exogenous lottery, the government raises lump-sum taxes to repay the non-defaulted debt

and operates transfers with the central bank.

2.1 Monetary-Fiscal interactions

The government’s budget. The government issues a quantity of defaultable nominal bonds

to finance the realization of stochastic public consumption needs in the first period, S̃, which

follows a Uniform[0, 1] distribution. A unit of bonds is a promise by the government to pay R

units of money in the second period, in exchange for one unit of money in the first period. We

assume the price of consumption in the first period as a numeraire, P1 = 1, so that the nominal

amount of bonds issued by the government is equal to its real needs S̃. The real return of bonds

depends on the occurrence of default and inflation in the second period. Default is an exogenous

event occurring stochastically according to the following lottery:

θ =




θH = 1 with probability q,

θL ∈ (0, 1) with probability 1− q.
(1)

where θ denotes the fraction of debt effectively repaid by the government. Inflation Π := P2/P1

occurs when there is variation in the price of consumption between the first and the second period.

Finally, the government raises real resources by collecting lump-sum taxes T . The budget set of
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the government in the second period is given by

T =
Rθ

Π
S̃ + τ (2)

where τ represents eventual transfers from the government to the central bank. Throughout

the paper we assume the two realizations (θ, S̃) are unobservable to households. Effectively, θ

determines whether a default occurs or not, so it is natural to assume it to an unobservable

fundamental component of the assets value. Bond supply S̃ should be broadly interpreted as

any type of disturbance that may move the aggregate asset supply irrespective of fundamental

values, so to create confusion on the sources of price fluctuation; this is, for example, achieved

thought the fiction of noisy traders in a large stream of literature in finance.

The central bank’s budget. The central bank has an initial endowment ecb and issues a

stock of money m to buy a nominal quantity of government bonds bcb or invest in a safe asset

scb, so that

ecb +m = bcb + scb (3)

is the budget constraint of the central bank in the first period. In the second period, the central

bank collects bond and safe asset revenues, reimburses money and transfers the endowment to

the government.11 The budget constraint of the central bank in the second period is therefore:

Rθ

Π
bcb + scb + τ =

m

Π
. (4)

where, without loss of generality, we normalize the real return of the safe asset to one. The

transfer τ is critical for the determination of monetary fiscal interactions. We consider the

following generic rule for transfers:

τ =

(
1− Rθ

Π

)
κ bcb − ecb, (5)

where κ ∈ [0, 1] measures the degree of fiscal backing by the government: κ = 0 entails no

backing, whereas κ = 1 is perfect fiscal backing as any loss or profit is transferred entirely to the

11The inclusion of an initial endowment of the central bank and the assumption that money is reimbursed at
the end of the second period are artefacts of the finite nature of time considered here. Appendix XXX shows
that, in an infinite horizon OLG economy, the central bank’s endowment is replaced by proceeds from previous
central bank savings, and the old households sell their money balances to the young.
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fiscal authority. Hence, the rate of return on money obtains as

1

Π
=

(
(1− κ)

Rθ

Π
+ κ

)
α + (1− α), (6)

where α := bcb
m

represents the fraction of money stock invested in asset purchases. We will refer to

α̂ := (1− κ)α as the degree of fiscal dominance: when α̂ = 0, inflation is equal to 1 irrespective

of the default realization. The rate of the return on money 1/Π is a weighted average, with

weight α̂, of the real return on bonds Rθ/Π and on the one on safe asset 1; as α̂ increases, the

correlation between the real return on money and bonds increases.

In particular, we denote the regime where κ = 1 as monetary dominance. In this regime,

the budget constraint of the central bank holds with Π = 1 for any values of (θ, R,m, bcb). This

implies that the value of money is stable irrespective of fiscal variables, since losses or gains from

central bank APs are perfectly offset by transfers to or from the fiscal authority. When instead

κ = 0, we will say that taxes are determined under the fiscal dominance regime: transfers to

the central bank do not vary with profits (or losses) from APs, and inflation Π must adjust for

(4) to hold. The value of money must thus fluctuate with profits and losses from APs, inflating

or deflating the value of central bank liabilities (money), to balance the budget. Given κ = 0,

the higher the α, the higher the share of the central bank assets that are invested in bonds, the

closer the real return of money is to the one on bonds.

AP policy rule. We consider a class of asset purchase policies that we denote as “price-

targeting” policies. These policies are characterised by an interval of feasible purchased quantities

[0, bcb] and a target equilibrium interest rate Rn. When bidding in the bond market, the central

bank submits, simultaneously to investors, a limit order to buy up to bcb at an interest rate larger

than or equal to the target Rn. The rule can be represented formally by the following equilibrium

requirement:

bcb = argmin
bcb∈[0,bcb]

|R(bcb)−Rn| (7)

implying that, in equilibrium, APs bcb ∈ [0, bcb] are such that the resulting market interest rate

is the closest possible to target Rn. The notation R(bcb) is adopted to remark that, being a

non-atomistic agent, the central bank purchases impact on the market price, i.e. lowering bond

returns. As we will see, since R′(bcb) < 0, APs are maximal with R(bcb) > Rn and zero when

R(0) < Rn. Moreover, note that by fixing the target to the lowest possible interest rate, i.e.

Rn = 1/θH , APs are maximal at any price. This case entails an uncontingent APs policy: the
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central bank buys the same amount bcb = bcb at any price. It is important to remark that,

to implement price-targeting AP polices, the central bank does not need to know neither gross

bond supply S̃, nor the fundamental θ. The limit order that the central bank submits must only

specify a price target and an upper bound for quantities.

2.2 The private sector

A household, denoted by j, has a quasi-linear utility function Uj ≡ u(cj,1) + cj,2, where utility is

increasing and concave in first-period consumption cj,1, and linear in second-period consumption

cj,2. Each household has a productive endowment ej = 1+c∗. At the beginning of the first period,

agents decide how much of the endowment to allocate to consumption cj,1 and savings aj. At

the beginning of the second period, agents receive payoff-relevant information Ωi, and make a

portfolio choice bj, which we describe in detail in the following paragraph. In the second period,

agents receive the return from their savings, which depends on their previous portfolio choice

Rj(bj), pay lump-sum taxes T/2 and consume cj,2. Formally, household j solves the following

consumption-savings problem:

max
aj∈[0, ej ]

E [u(cj,1) + cj,2] , (8)

subject to

cj,1 = e− aj, (9)

cj,2 = aj max
bj

E [Rj(bj) |Ωj]−
T

2
. (10)

Let us now describe the portfolio choice. A structural heterogeneity exists in that households

differ in the type of financial asset they have access to. We distinguish between two types, each

of unitary mass.

We refer to the first type as savers, denoted by j = s ∈ [0, 1]. These agents do not face

a portfolio problem, and can only save in the form of money, i.e. bs is indeterminate and in

equilibrium as = m. Their savings thus yield a real rate of return equal to the inverse of the

gross inflation rate

Rs =
1

Π
. (11)

Moreover, savers’ information set Ωs does not contain additional information other than the

prior distribution of θ and S̃. Savers generate demand for money and, importantly, fluctuations

in expected inflation have consequences for their saving-consumption choice and, therefore, for
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aggregate consumption.

The second type of household, denoted by j = i ∈ [0, 1], are investors, who do have access to

a financial market where they face a portfolio problem. In the financial market, investors must

allocate their savings ai into two types of assets: nominal defaultable government debt, and a

safe asset (e.g., a fully diversified portfolio) that has a real, risk-free rate of return of unity, and

is available in infinitely elastic supply. We assume that investors can sell bonds short up to a

fraction b of their savings. Short-selling of the safe asset is instead not allowed. Each investor i

thus chooses what fraction bi ∈ [−b, 1] of its savings to invest in government bonds, so that her

per-unit rate of return is

Ri(bi) := bi
Rθ

Π
+ (1− bi) , (12)

and is thus determined for a fraction bi by the real return on the bond, and for the rest by the

return on the safe asset. Importantly, this setting introduces an endogenous bound to the asset

position of households, since they cannot invest more than the savings they decided, and short-

sell beyond an exogenous limit −b. Because of risk neutrality in second period consumption,

bounds will be binding, except for a knife-hedge case, preventing full arbitrage in the financial

market. The lack of complete arbitrage due to position bounds is a key assumption for APs

to have an effect. We show in Appendix A that, in a noisy financial market with preference-

induced finite asset position (e.g. risk aversion), observable APs that are fully backed by lump

sum taxation will perfectly crowd out private demand, leaving the equilibrium price unaffected.

This is the well-known neutrality result of Wallace (1981).

2.3 Market Clearing and Equilibrium

Market clearing The equilibrium prices in the economy Π and R are such that money, bond

and good markets clear, that is

money:

∫ 1

0

asds = m, (13)

bonds:

∫ 1

0

ai bi di+ bcb = S̃, (14)

goods:

∫ 2

0

cj,1 dj +

∫ 2

0

cj,2 dj + S̃ = 2 e. (15)

In particular, a market return R is such that the orders submitted by investors and central bank

clear bond government’s supply. Hence, the equilibrium interest rate R will generally depend on
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the repayment state θ, gross supply S̃, the asset purchases bcb and position bounds b, ai.

Equilibrium We are now ready to give a general definition of an equilibrium. We divide our

definition in two parts. First, a notion of competitive equilibrium that generically depends on

information sets of agents. Second, a rational expectation equilibrium, in which agents learn

from all endogenous aggregate variables being the price R and the APs bcb, by conditioning on

the correct equilibrium distribution of these objects.

Definition 1. For given differentiable and concave utility function u(·), households information

sets {Ωj}j∈[0,2], households’ and central bank’s endowments {ecb, {ej}j∈[0,2]}, a degree of fiscal

backing κ, a central bank’s APs range [0, bcb] with price target Rn, a short selling bound b, and

a lottery (1) with default probability 1 − q, a competitive equilibrium is characterised by a price

function

R(θ, S̃, bcb) : {θH , θL} × [0, 1]→ R+, (16)

a collection of individual market policies {{aj}j∈[0,2], {bi}i∈[0,1]} and an AP-policy bcb, such that,

at any state (θ, S̃):

i) the budget sets of the government and the central banks (2)-(3)-(4) hold, transfer occur

according to (5), and inflation obtains as (6);

ii) the APs rule (7) is satisfied;

iii) the consumption and portfolio problems of households (8)-(9)-(10)-(11)-(12) are solved;

iv) the bond, money and goods market clear according to (13)-(14)(15);

(v) the consumption allocations {c1,j, c2,j}j∈[0,2] are pinned down.

A Rational Expectation Equilibrium (REE) is one in which investors learn about θ from the

market price and central banks’s APs, that is (R, bcb) ∈ Ωi, conditional on the price equilibrium

distribution (16) and the target rule (7), respectively.

Our definition emphasises the return on the financial market as key object characterising the

equilibrium. Section 3 will be devoted to the building of this mapping, clarifying the differences

emerging from the requirement that investors have rational expectations. Before diving into it,

in the rest of this section we will clarify under which conditions the market can generate the first

best allocation and which externalities are responsible for eventual departures.

12



2.4 Market vs Planner

Individual market policies. We clarify here how individual market policies aj and bi as

functions of the rate of return prevaling in the financial market where agent j has access to.

First, let us focus on the consumption-saving decision. The amount of savings aj that agent j

decides to hold is given by the following Euler equation

u′(cj,1) = E
[
max
bj

E [Rj(bj) |Ωj]

]
, (17)

i.e., the marginal utility of first-period consumption must equate to the expected real return on

saving. Without loss of generality, we fix u′(c∗) = 1, so that aj = 1 is the amount of savings that

equates marginal utility to the inverse of the discount factor, assumed equal to one for simplicity.

The Euler equation (17) entails the traditional intertemporal substitution motive at the core of

workhorse models of the business cycle: an expected real return above (resp. below) the natural

level (1 in our case) induces a negative (resp. a positive) gap of current consumption c1,j with the

natural level c∗. According to (11), the real return for savers is equal to the inverse of inflation,

so that, E[1/Π] < 1 implies c1,s > c∗. For investors the same logic applies, but according to (12),

the return that they get on the financial market is a function of their portfolio choice, that they

anticipate when deciding on their savings.

Let us then look at the portfolio choice of investors. Because of risk neutrality, agent i with

information set Ωi chooses

bi =





1 if and only if E
[
Rθ

Π
|Ωi

]
> 1,

indeterminate if and only if E
[
Rθ

Π
|Ωi

]
= 1,

−b if and only if E
[
Rθ

Π
|Ωi

]
< 1,

(18)

where in case of indeterminacy the investor is ready to buy (or short-sell) any quantity within

the bounds [−b ai , ai ]. Investors submit demand schedules contingent on the market clearing

interest rate R (i.e., the inverse of the bond price), and the available information summarised

by Ωi, to be specified later. It immediately follows that E [Ri(bi)] ≥ 1, that is, since investors

have the outside option of buying the safe assets, their expected return is never lower than the

safe rate. In particular, as we will see in detail later, the possibility of saving returns above the

natural rate depends on the presence of exogenous bounds to asset positions, that by limiting
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the purchases of relatively more optimistic investors, generates a premium to be paid by the

government for the market to clear.

Welfare. To better understand how frictions in the financial market may generate suboptimal

outcomes, let us work out the first best allocation in this economy. Firstly, let us define social

welfare as the sum of utilities of agents and government, i.e. is equal to total utility from

consumption. Using (2)-(14), aggregate welfare is given by

W :=

∫ 2

0

Uj dj + S̃ = u(es −m) + u(ei − ai) +m+ ai + ecb. (19)

One can easily note that only consumption-saving choices matter for welfare, whereas portfolio

choices by investors in the financial market do not. In fact, the market for bonds accounts only for

a liquidity friction on the side of the government and does not generate any new production. It

is immediate to realise that the first best allocation, entailing maximum welfareW∗ := 2u(c∗) +

2 + ecb, is the one characterized by as = ai = 1, that is, when the marginal utility of first-period

consumption for any household is equal to the natural rate.

Market implementation of the first best. Under which condition can the market entail the

first best allocation? The first best allocation can be achieved by the market when the expected

returns on savings are equal to the natural rate, that is, E[Ri(bi)] = E[1/Π] = 1. This occurs

when investors share the same information as the following propositions states.

Proposition 1. Suppose investors have homogeneous information, i.e. Ωi = Ω̄ for each i, then

the market achieve then money and bonds yields the same real return Ri(bi) = Π = 1 so that the

first best allocation as = ai = 1 is achieved.

Proof. See Proof 1 in the appendix. �

The proposition states that investors’ homogenous information makes the distinction between

money and bonds and the segmentation of the financial market irrelevant as the market is still

able to implement the first best. In this sense, our key friction is the heterogeneity of information

across investors. When investors have disparate opinions on the likelihood of full repayment, the

market solution, may not necessarily implement the first best allocation, for two key reasons.

First, investors do not internalize that taxes in the second period vary with the market price,

which ultimately depends on investors’ actions as a whole. Second, given taxes, there are strictly

14



positive gains to be done in the financial market exploiting private information since the presence

of bounds to asset positions prevents investors’ full arbitrage.

3 Equilibrium return with dispersed beliefs

In this section we derive the price mapping (16) that characterises an equilibrium in presence of

heterogeneous information. We will first derive a mapping from a given distribution of investors’

posterior beliefs to the market clearing return. Then we will discuss the information set and how

posterior beliefs are formed in a REE. We will finally discuss the properties of the REE price

equilibrium mapping.

3.1 Equilibrium Price Given Marginal Investor Beliefs

In this subsection, we derive a generic characterisation of the equilibrium bond price in the

financial market, as a function of the beliefs of the marginal investor, which represent a sufficient

statistic for a given distribution of investors’ posterior beliefs. This is useful because the mapping

between the marginal investor’s beliefs and the equilibrium in both the financial market and the

macroeconomic model are independent of the way in which such beliefs are formed.

We now focus on the investors’ problem in the financial market and the equilibrium therein.

Investors’ total savings (and upper bound for long positions in bonds) ai are decided before

entering this stage of the first period, when their information set is homogeneous, which implies

that they will be the same for all agents. To reflect this fact and lighten up notation, we thus

omit subscript i and denote total savings with a for the rest of this section.

Let us denote the repayment probability held by investor i by pi := Prob(θ = θH |Ωi) ∈ [0, 1],

which is distributed according to a generic distribution G. It follows that the expected value of

the fundamental θ for an investor having pi is given by E[θ |Ωi] = θL + pi(θH − θL), which is

strictly increasing in pi. Using equation (6) and provided that Rθ < 1/α̂, we get that the real

bond payoff is
θ

Π
=

1− α̂
1
θ
− α̂R, (20)

where α̂ = (1− κ)α, so that for κ = 1 or α = 0 it is easy to verify that Π = 1. It is also easy to

check that monotonicity in beliefs on repayment maps into monotonicity in beliefs about ex-post
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real returns for a given R, that is:

pi ≥ pj ⇔ E [θ |Ωi] ≥ E [θ |Ωi] ⇔ RE
[
θ

Π
|Ωi

]
≥ RE

[
θ

Π
|Ωi

]
, (21)

for any degree of fiscal dominance α̂ ∈ [0, 1) and pair of agents (i, j) ∈ [0, 1]2. We introduce then

the following definition.

Definition 2 (Marginal agent and market clearing price). For a given net supply, S̃ − bcb, the

marginal agent m ∈ [0, 1] is the investor who holds posterior beliefs pm ∈ [0, 1] such that the

market clears with

a (1−G(pm))− a bG(pm) = S̃ − bcb (22)

where G(pm) is the mass of investors who are more pessimistic than the marginal investor, and

short-sell bonds on the market.

The marginal investor is the equilibrium sufficient statistics of the distribution of investors

beliefs. It yields the equilibrium restriction that defines the equilibrium return in the financial

market. Such restriction is given by (18) where, by construction, bm is the value indeterminate

at the equilibrium. From that relation, the market clearing price R is determined by

RE
[
θ

Π

∣∣∣Ωm

]
= R

[
pm θH

1− α̂
1− α̂RθH

+ (1− pm) θL
1− α̂

1− α̂RθL

]
= 1, (23)

so that R is the price that makes the marginal investor indifferent between buying or short

selling. Line (23) defines the equilibrium fix point equation, which then yields the equilibrium

return R as a function of the posterior of the marginal investor pm and the characteristics of the

default lottery. This is stated in the following proposition.

Proposition 2. Provided Rθ < 1/α for any θ ∈ {θL, θH}, then, for a given belief of the marginal

agent pm, the equilibrium interest rate R(pm) : [0, 1]→ [1/θH , 1/θL] is given by

R (pm) =
(1− α̂)E[θ |Ωm] + (θH + θL)α̂−

√
((1− α̂)E[θ |Ωm] + α̂(θH + θL))2 − 4α̂θHθL

2α̂θHθL
. (24)

The equilibrium price function R(pm) has the following properties:

i. it is monotonically decreasing in the posterior of the marginal agent pm with:

lim
pm→0

R(pm) =
1

θL
> lim

pm→1
R(pm) =

1

θH
, with

∂R(pm)

∂pm
< 0;
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ii. it is monotonically decreasing in the degree of fiscal dominance α̂ with:

lim
α̂→0

R(pm) =
1

E[θ|Ωm]
, lim

α̂→0

∂R(pm)

∂α̂
= 0,

∂R(pm)

∂α̂

∣∣∣
α 6=0

< 0.

Proof. Postponed to Proof 2 in the appendix. �

The proposition characterises the one-to-one mapping R(pm) : [0, 1] → [1/θH , 1/θL] between

the beliefs of the marginal agent and the equilibrium price or interest rate. The first part

states that the equilibrium nominal return is equal to its minimum 1/θH when the marginal

agent believes repayment occurs with certainty, and it increases as the marginal agent considers

default more likely, until it reaches its maximum 1/θL, where the marginal agent believes default

occurs with certainty. Intuitively, a higher probability of repayment by the marginal agent maps

into a lower equilibrium return because a smaller remuneration is sufficient to clear the market

when the distribution of beliefs in the population is more optimistic.

The second part of the proposition states that a higher degree of fiscal dominance α̂ decreases

the equilibrium nominal interest rate. To see why, recall first that fiscal dominance makes

inflation comove with the fundamental: in repayment states, central bank profits from APs

generate deflation, which increases real bond returns; in default states instead, central bank

losses generate inflation, which reduces real bond returns. In the appendix we show that the

former effect is always stronger than the latter, so R increases with α̂ for any marginal agent

belief pm.

3.2 Information

3.2.1 Exogenous Information: APs and Private Signals

Uncontingent AP rule. Through the whole section we will consider the simplest case for the

AP rule (7) by fixing the price target to the lowest return, Rn = 1/θH , so that APs will be a

fixed amount bcb at any R > 1/θH .

For the remainder of Section 3, we focus on the simplest case that the central bank targets

the highest possible price θH , that is, it intervenes by buying the maximum at any price. This

result in an uncontingent quantity policy, allowing to study the workings of APs in the simplest

case. In Section 5, we instead show that the optimal price-targeting policy must be one that

targets a particular price target.
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As anticipated in Subsection 2.1, here we assume that the central bank follows a price-

targeting policy where it submits a limit order to buy up to bcb units of the bond at an interest

rate larger than or equal to Rn = 1/θH . Since this target is the lowest possible interest rate

prevailing in the market, this policy is equivalent to assuming that the central bank is always

intervening in the market. The amount of bonds it buys must however be such that net supply is

non-negative, because investors demand cannot be negative. It follows that if total bond supply

(by government and short-sellers) is below bcb, the central bank buys all the supply.12 If instead

total supply is above bcb, then the central bank buys bcb at the prevailing market interest rate.

The quantity of central bank purchases that implements its policy is given by

bcb = min
{
S̃ + a b, bcb

}
and bcb ∈ [0, 1 + a b] (25)

for any (θ, S̃). With a little abuse of language, we refer to this policy as uncontingent because

the central bank is always intervening, and even the quantity of bonds it buys only depends on

S̃ for feasibility reasons. As we will discuss later, this is a conservative assumption in evaluating

central bank losses. We denote with P0 := bcb−a b the probability that the central bank purchases

the whole bond supply, that is, no supply is available to buyers in the market. We refer to this

scenario by saying that the market is passive. This is a slight abuse of notation, because when

b > 0 investors will all be selling the bonds short in this circumstance. It is only when b = 0 that

the market is truly passive, in the sense that no investor is taking any short or long position in

bonds. It follows that with probability 1−P0 there is a non-zero mass of investors buying bonds

in the market, in which case we say the market is active.

Private information on default. In period t = 1, bond investors do not observe the realiza-

tion of θ, but they may receive information about it: we denote the information set of investor

i in stage 1 with Ωi. We assume that each agent has a private noisy signal on θ given by

xi = θ + σx ξi, (26)

12In this case, the central bank will buy at the full information interest rate R = 1/θ. The reason behind this
will be clearer later on in the analysis, and is explained in detail in Section 4.2 where we discuss central bank
profits and losses from APs.
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where ξi ∼ N(0, 1) for each i are mutually orthogonal white noise shocks. We denote the

unconditional distribution of xi with Nx.13

3.2.2 Endogenous Information: the Price Signal

The distribution of the marginal investor. We can now derive explicitly how the mass of

investors taking long and short bond positions is determined in equation (22). First, whenever

the market price does not fully reveal the value of θ, posterior beliefs are increasing in the private

signal xi in the sense of first-order stochastic dominance. Second, investors’ expected payoff are

an increasing function of beliefs, as shown in (21). This implies that agents follow monotone

threshold strategies, and we can rewrite equation (18) as

bi(xm) =





1 if xi ≥ xm,

−b if xi < xm
(27)

where bi(xm) is the bond position taken by agent i when the private signal threshold is xm, which

is endogenous to the equilibrium. We assume that a law of large numbers across investors applies

as in Judd (1985): for a given value of the fundamental, the mass of investors buying bonds is

given by the share of agents with a private signal larger than xm, that is

1−G(pm) = Prob(xi ≥ xm | θ) = Φ

(
θ − xm
σx

)
,

where Φ denotes the standard normal cumulative distribution function. The cutoff private signal

xm identifies the marginal agent on the market, i.e., the investor whose private signal is such

that she is indifferent between buying the bonds or investing in the safe asset. Rearranging

equation (22) we can express the private signal of the marginal agent as

xm(θ, S) = θ + σxΦ
−1(1− S). (28)

13The unconditional distribution of xi is given by

fxi
(x) =

∑

j∈{L,H}
qjfxi

(x|θj) =
1

σx

[
q φ

(
θH − x
σx

)
+ (1− q)φ

(
θL − x
σx

)]

where qH = q and qL = 1− q.
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where

S(S̃,b) :=
S̃ + a b− bcb
a(1 + b)

∼ Uniform [Smin, Smax] (29)

defines net bond supply per individual exposure, or simply net supply, as the supply available to

each buyer, in units of individual exposure ∆ := (a(1 + b))−1, given position bounds and APs.

We summarise with b := {a, bcb} the level of investors’ savings and of central bank APs.

Equation (28) states that the marginal agent’s private signal xm must be equal, in equilibrium,

to a function that is linear in the fundamental shock θ, and nonlinear in the gross supply shock

S̃, the central bank’s AP policy, and the bond position bounds. Henceforth, we will focus on

equilibria where xm and R convey the same information, in which case conditioning beliefs on

the marginal agent signal xm is equivalent to conditioning them on the endogenous price R. We

thus refer to xm as the price, or market, signal, which is a public signal that is endogenous to

the equilibrium.

We use M(b) to denote the unconditional distribution of xm. Note that this distribution

is not necessarily the same as the private signal distribution Nx, because of market clearing

restrictions. That is, the support of net supply S depends on the central bank AP policy, as

well as the bond position bounds. In particular, M(b) = Nx if and only if [−b, a] = [0, 1] and

bcb = 0 for any (θ, S̃).14 More generally, the support of the marginal investor distribution ranges

from Smin = (a b− bcb) ∆ ≥ 0 to Smax = (1 + a b− bcb) ∆ ≤ 1. This implies that the support of

xm conditional on θ may differ from the support of xi, and ranges from xmin := xm(θL, Smax) to

xmax := xm(θH , Smin).

It is important to note that, since the support of xm depends on θ and may have finite bounds,

there may exist an upper interval of price signals [x+, xmax] that realise only if θ = θH , and a

lower interval [xmin, x+] that realise only if θ = θL. We define S− and S+ as the values of net

supply that correspond to (x−, x+):

S− : x+ := xm(θL, Smin) = xm(θH , S−),

S+ : x− := xm(θH , Smax) = xm(θL, S+).
(30)

In practice, S− (resp. S+) is the value of net supply at which, when θ is high (resp. low),

the marginal investor receives the same private signal that the most (resp. least) optimistic

marginal investor would receive when θ is instead low (resp. high). This means that observing

any xm ∈ (x+, xmax] ∪ [xmin, x−) is revealing of the underlying value of θ. On the contrary,

14This can be shown using the fact Φ(S) ∼ N(0, 1) if S ∼ Uniform[0, 1].
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observing any xm ∈ [x+, x−] is compatible with both values of θ and leaves uncertainty on which

θ has realised.

The conditional p.d.f. of xm conditional on θ is given by

fxm|θ(y | θ,b) =





max{bcb − a b, 0} for y = xmax
a(1+b)
σx

φ
(
θ−y
σx

)
for y ∈ (xmin, xmax).

(31)

Note that we are treating the market signal as a random variable on the extended real line, that

is, including the infinity elements as actual numbers. This is useful to deal with the particular

AP policy we are assuming: when bcb > a b, the conditional density has a mass point at xm =

xmax = +∞, because there is a non-empty set of states in which net supply is zero and the

market is passive.15 When instead bcb < a b, the conditional density of xm becomes a standard

truncated normal density with no mass points.

An illustration. Figure 1 illustrates the mapping from fundamentals (θ, S) to the equilibrium

marginal investor and price signal entailed by (28). The figure plots the realisation of xm on the

y-axis as a function of the net supply shock S on the x-axis, and the fundamental shock θ: the

solid and dashed lines refer to the case where θ is equal to θH and θL respectively. Each panel

illustrates different combinations of (b, a, bcb).

The left panel, illustrates our benchmark case, {b, a, bcb} = {0, 1, 0}. In this case, S̃ = S

and M = Nx. When S = 1, the whole population of investors is needed to clear the market,

so the most pessimistic investor, i.e. the one with the lowest private signal (xi → −∞), is

marginal. When instead S = 0, there is an infinitesimal amount of supply, such that only the

most optimistic investor (xi →∞) buys bonds and is marginal. For a given value of S ∈ (0, 1),

the mass of investors required to clear the market and the marginal investor’s identity (or position

in the distribution) do not change with θ, but her signal will be more optimistic when θ is high,

15It is easy to verify that

∫ +∞

θL−σxΦ−1
(

1+a b−bcb
a+b

) a+ b

σx
φ

(
θ − y
σx

)
dy + (bcb − a b) = 1

and thus the integral of the p.d.f. on the extended real line is equal to 1. When instead bcb < a b

∫ θH−σxΦ−1
(

a b−bcb
a(1+b)

)
θL−σxΦ−1

(
1+a b−bcb

a(1+b)

) a(1 + b)

σx
φ

(
θ − y
σx

)
dy = 1.
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Figure 1: In the right panel, the top (resp. bottom) line plots the realisation of the price signal in case
θH (resp. θL) as a function of net supply per individual exposure S. In the left panel, we plot on the
x-axis the probability density function of the price signal realisation, which is measured on the y-axis.
The left panel plots the benchmark case of unit position bounds and no APs (b, a, bcb) = (0, 1, 0). The
centre panel plots the generic case with short-selling and no APs (b, a, bcb) = (−0.05, 1.05, 0). The left
panel plots a case with APs (b, a, bcb) = (−0.05, 1.05, 0.07).

because that shifts the mean of the private signal distribution. In other words, θ = θH as

xm(θH , S) > xm(θL, S) always.

The central panel illustrates a case with position bounds outside unity, that is, short-selling

is possible and long positions can be larger than one: −b < 0, a > 1, bcb = 0. When short

and long position bounds are outside unity, the marginal investor distribution has truncated

tails as Smin > 0 and Smax < 1. Some very optimistic investors are never marginal, as there

is always enough supply from short sellers to satisfy their demand; on the other extreme, some

very pessimistic buyers are never marginal either, as long position bounds are such that more

optimistic investors are always enough to meet supply.

Finally, the right panel shows the effect of central bank uncontingent asset purchases, keeping

the same position bounds of the central panel: −b < 0, a > 0, bcb > a b > 0. We assume bcb > a b

to highlight a difference from the central panel of the figure: sufficiently large APs have the effect

of absorbing all the short selling, which implies that we are back in the case where Smin = 0,

zero net supply is a possibility, and the most optimistic investor in the whole population can

be marginal. Similarly to the central panel, in the left tail of the marginal agent distribution,

there is an interval of investors which are never marginal, as the intervention of the central bank

always crowds their purchases out. The presence of a left tail truncation in the marginal agent

distribution gives rise to an interval [xmin, x−) of price signals whose observation is uniquely

associated with the realization of θL.
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It is worth noting that any combination of (b, a, bcb) that delivers the same (Smin, Smax) pairs

generates identical truncations of the marginal agent distribution. In this sense,16 implementing

uncontingent asset purchases is analogous to an expansion of the long position limit, since it

effectively increases the amount of bonds purchased at any market price, as if investors could

absorb a larger stock of assets.

3.3 Marginal Investor Beliefs

In the analysis that follows, we often condition on the market being active because we are

interested in characterising the equilibrium price when it is determined by the market, rather

than the central bank. This implies that we condition on xm ∈ (xmin, xmax), and not on the case

where xm = xmax whenever that is a possibility.

3.3.1 “Cursed” Posterior Beliefs: Only Private Signals

It is instructive to first consider the simplest case where agents are “cursed” in the terminology

of Eyster et al. (2019), i.e. they condition their beliefs on the private signal (and APs rule) but

neglect the information content of the price they observe. In this case, the posterior probability

of θ = θH conditional only on private and prior information is given by

pcuri := P (θ = θH |xi ∼ Nx) =
q φ
(
θH−xi
σx

)

q φ
(
θH−xi
σx

)
+ (1− q)φ

(
θL−xi
σx

) ,

i.e. it is the probability that a certain net supply realisation consistent with the observation of

xi occurred conditional to θH rather than θL. Therefore R(pcurm ), with m defined as the identity

of the investor observing the threshold signal xi = xm with xm given by (28), would be the

equilibrium return prevailing in a market with cursed investors. We will use the “cursed” case

as our simplest benchmark of beliefs formation and market price to isolate the effect of learning

from prices.

16But not in general, as different combinations of (b, a, bcb) imply different mappings between gross and net
supply.
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3.3.2 “Public” Posterior Beliefs: Only Price Signals

As an intermediate step, it is instructive to derive the posterior belief conditional on public

information only, i.e. the probability of θH conditional on the observation of the realisation of

the marginal agent (28), equivalent to the observation of the market price. As we highlighted

previously, depending on {b, a, bcb} there may be partitions of the price signal support in which the

value of the fundamental is fully revealed conditional on observing xm ∈ [xmin, x−) ∪ (x+, xmax].

In this case, the posterior probability of θ = θH conditional only on public and prior information

is given by

ppubm := P (θH |xm ∼M(b)) =





1 if xm ∈ (x+, xmax],

q φ
(
θH−xm
σx

)

qφ
(
θH−xm
σx

)
+ (1− q)φ

(
θL−xm
σx

) otherwise

0 if xm ∈ [xmin, x−),

where note ppubm = pcurm within the non-revealing region. In fact, in this region, the information

given by the price coincides with the information contained in the marginal agent’s private signal.

In fully revealing regions, however, conditioning on public information will take advantage of the

fact that a particular realisation of the price signal xm is consistent with only a particular

realisation of θ. R(pextm ) is thus a “publicly evaluated” interest rate, i.e. it represents the price

that would make an external observer using only public information indifferent between buying

bonds and selling them short.

3.3.3 Equilibrium Posterior Beliefs: Private Signals and Learning from Prices

We can now characterise the equilibrium posterior beliefs of investor i conditional on her whole

information set, which includes: i) the AP rule and exogenous prior distributions, ii) the private

signal xi, drawn from its distribution Nx; and iii) the endogenous public signal given by the

market price R, which is equivalent to that contained in xm. In this case, the posterior probability
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of θ = θH conditional on Ωi = {xi ∼ Nx, xm ∼M(b)} is given by

pi,m :=P (θH |xi ∼ Nx, xm ∼M(b)) =

=





1 if xm ∈ (x+, xmax],

q φ

(
θH−xi+xm2

σx/
√

2

)

q φ

(
θH−xi+xm2

σx/
√

2

)
+ (1− q)φ

(
θL−xi+xm2

σx/
√

2

) otherwise

0 if xm ∈ [xmin, x−),

(32)

where note pi,m = ppubm within the fully revealing regions, whereas it is different otherwise. It is

worth noting that, whenever the price signal is not fully revealing, the precision of the posterior

beliefs of an investor observing private and public information is exactly double that of both a

cursed investor not updating public information, and an external observer not holding private

information. This follows from the fact that, in the non-revealing region, both private and price

signal have the same precision, and observing both doubles the precision of posterior beliefs.

Importantly, R(pm,m) defines the equilibrium return in our model, which obtains by evaluating

pi,m with xi = xm:

RE
[
θ

Π
|xm ∼ Nx, xm ∼M(b)

]
= R

[
pm,m(xm)θH

1− α̂
1− α̂RθH

+ (1− pm,m(xm))θL
1− α̂

1− α̂RθL

]
= 1.

(33)

3.4 A Characterisation of Equilibrium Returns

To characterise the equilibrium price, it is useful to establish the following statement.

Lemma 1. When prices are not fully revealing, the equilibrium posterior of the marginal agent

is larger than the public posterior of the marginal agent, i.e. pm,m > pcurm = ppubm , if and only if

xm > x∗ :=
θH + θL

2
,

with xm ∈ (x−, x+). In particular, p∗,∗ = pcur∗ = ppub∗ = q where p∗,∗, ppub∗ and pcur∗ represent the

equilibrium, public and cursed posterior of the marginal agent, respectively, computed conditional

to x∗.

Proof. Postponed to appendix 3 �

25



The lemma states that the equilibrium posterior of the marginal agent is above (below) the

public one when the price signal is not fully revealing and higher (lower) than the uninformative

value x∗.

To gain intuition, consider first the effect of exogenous public news (e.g. investors observing

an exogenous public signal on θ) on the equilibrium. A public signal above the prior mean

of θ makes investors’ beliefs shift up, and the equilibrium interest rate shift down, with equal

elasticity, without affecting the relative mass of buyers.17 In this case, investors do not learn

anything from the price change in itself because it is entirely due to the variation in public news.

Consider now the effect of a change in the equilibrium price (hence xm) due to a shock to the

fundamental θ. This will shift up the distribution of investors’ private signals as well as the

equilibrium price, without affecting the mass of buyers. The crucial difference with the previous

example is that xm is an endogenous signal that aggregates private information: when investors

see the equilibrium price go up, they revise their beliefs up again. This update triggers a further

shift up in the market price, in a loop of amplification.

x∗

xm

0

1

q

pm,m

ppub
m

pcur
m

xmin x− x∗ x+ xmax

xm

0

1

q

xmin x− x∗

xm

0

1

q

Figure 2: The figure illustrate the relation among cursed, public and equilibrium marginal posteriors
as a function of the market signal xm. The left panel plots the benchmark case of unit position bounds
and no APs (b, a, bcb) = (0, 1, 0); the central panel plots the generic case with short-selling and no APs
(b, a, bcb) = (−0.05, 1.05, 0); the right panel plots a case with APs (b, a, bcb) = (−0.05, 1.05, 0.07).

Figure 2 illustrates Lemma 1, plotting cursed (with circles), public (with a dashed line)

and equilibrium (with a solid line) posterior beliefs of the marginal agent as a function of the

realisation of the price (or marginal agent) signal, in the same three specifications of Figure 1.

In the first panel, unit position bounds and no APs imply that the private signal and price signal

distributions Nx and M coincide. The market signal does not generate fully-revealing regions,

and the cursed and public posteriors both lie on the same curve pcursm = ppubm . Cursed, public

17This is evident from the market clearing condition that depends solely on the dispersion of investors’ beliefs.
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and equilibrium posteriors all take value q at x∗, and are strictly monotonically increasing in xm,

ranging from 0 at xm → −∞ to 1 at xm → ∞. At x∗, cursed and public marginal posteriors

are flatter than equilibrium ones, meaning that the latter react to market news more than the

former.

In analogy to Figure 1, the central panel illustrates a case with position bounds outside [0, 1]

and without APs. The presence of truncations in the support of the market signals implies

−∞ < xmin < xmax < +∞, which narrows the range of possible marginal agents. Cursed

and public posteriors now differ in the regions of full revelation. Full revelation occurs only for

the external observer who takes advantage of the observation of the realisation xm vis a vis its

distribution M, whereas cursed agents do not. In full revelation regions, equilibrium marginal

posteriors are equal to public ones, since xm becomes an infinitely precise signal on θ and all

uncertainty is resolved.

Finally, the right panel illustrates the effect of APs, which is essentially to shift the support

of xm towards the right. On the one hand, larger APs make it possible that relatively more

optimistic investors can become marginal, as the central bank absorbs all the short sales, and

states with zero net bond supply can realise. On the other hand, larger APs imply that relatively

more pessimistic investors can never become marginal, as states with large net supply states

cannot realise due to APs. All in all, the effect of APs is to shift right towards the right all the

bounds xmin, x−, x+, xmax, making full revelation more likely to occur for bad states (θL) than

good ones (θH).

Finally, it is instructive to note that, in the non-revealing region (x−, x+), the curves of the

centre and right panels perfectly overlap with the curves in the left panel (in light gray): this is

a property of truncated normal distributions for which the ratio of probability of two outcomes

from the same distribution does not change with the size of the truncation, as far as these

probabilities do not take degenerate values. In other words, position bounds and APs only affect

the support of xm and its partitions and distribution, and not the posterior distribution of θ

conditional on xm when uncertainty remains.

Average ex-post returns. A consequence of learning from prices is that the equilibrium

interest rate does not reflect a fair evaluation of the asset. To appreciate this statement, it is

useful to write down the expression for the average ex-post rate of return for bonds

E[R(pm,m) θ] = E[E[R(pm,m) θ |xm ∼M(b)]] = E
[

E[θ |xm ∼M(b)]

E[θ |xm ∼ Nx , xm ∼M(b)]

]
= E

[
R(pm,m(xm))

R(ppubm (xm))

]
,
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where, by exploiting the law of iterated expectation, we show that the average ex-post return

on bonds is equal to the average ratio between the equilibrium interest rate and its analogous

evaluated according to public posterior beliefs. It is immediate to see that, in states where

R(pm,m) = R(ppubm ), the ratio is exactly equal to the safe rate of one. These states correspond

to fully revealing regions, while the equivalence is generally not true in the whole range of xm.

We can then state the following Lemma.

Lemma 2. In equilibrium, sufficiently large APs decrease the average ex-post return E[R(pm,m) θ]

strictly below the safe rate of one. In particular,

∂E[R(pm,m) θ]

∂bcb

∣∣
bcb=a b

< 0, and
∂E[R(pm,m) θ]

∂bcb

∣∣
bcb=a(1+b)

> 0,

that is, the amount of uncontingent APs that minimizes E[R(pm,m) θ] is interior in (a b, a(1+b)).

Proof. Postponed in Appendix 4. �

The Lemma provides a characterization of the impact of asset purchases on the average ex-

post market return. It highlights how asset purchases prevent the realization of states where

relatively more pessimistic investors become marginal, therefore taking out states in which the

market rate is lower than the public one.

4 Monetary-Fiscal Interactions and Welfare

4.1 Individual Rates of Return

Our final goal is to write down savers’ and investors’ unconditional expectation of the total return

on their savings, E[Rs] and E[Ri] respectively. We are interested in the unconditional version of

these expectations for two related reasons. First, because they determine the first-period demand

for consumption and savings by savers and investors via Euler equation (17). Second, because

these expectations depend on agents’ savings decisions and on central bank APs. In fact, an

equilibrium of the macroeconomic model is a fixed point of this two-way relationship between

prices and allocations.

Savers. In the case of savers, the expected return on money depends on the unconditional

distribution of inflation, which in turn depends on the interaction between the treasury and the
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central bank, and the profits and losses of the latter. We postpone this discussion to Subsec-

tions 4.2 and 4.3, where we consider the cases of monetary and fiscal dominance respectively.

Investors. With respect to investors, we can make some progress in characterising the way in

which APs affect their expected return from savings, without making specific assumptions about

fiscal-monetary interactions. Joining equations (12) and (18), the investors’ expected return per

unit of savings, conditional on her whole information set, is

E [Ri(bi) |Ωi] = bi(xm)E
[
Rθ

Π
|Ωi

]
+ (1− bi(xm)) 1 (34)

where Ωi = {xi ∼ Nx, xm ∼M(b)}, and bi(xm) is defined in (27).

To derive investors’ unconditional expected return from savings, let us first integrate (38) over

the private signal distribution, while continuing to condition on public information xm ∼M(b):

E [Ri(bi) |xm ∼M(b)] =

=

∫ +∞

−∞

(
bi(xm)E

[
Rθ

Π
|Ωi

]
+ (1− bi(xm))1

)
dFxi|xm(xi|xm,b) =

= 1 +

∫ +∞

−∞
bi(xm)

(
E[θ/Π |xi ∼ Nx, xm ∼M(b)]

E[θ/Π |xm ∼ Nx, xm ∼M(b)]
− 1

)
dFxi|xm(xi|xm,b)

(35)

where we used the equilibrium price equation (33) to substitute out R, and Fxi|xm(xi) is the c.d.f.

of the private signal conditional on the market signal, and its p.d.f. is given by

f(xi|xm,b) =
1

σx
φ

(
xi − xm
σx
√

2

)
∑

θ∈Θ(xm,b)

q(θ)φ

(
xi+xm

2
− θ

σx√
2

)

∑

θ∈Θ(xm,b)

q(θ)φ

(
xm − θ
σx

) (36)

where Θ is the set of values of θ that have positive probability conditional on (xm,b).18 The last

equality of equation (35) highlights two important facts. First, for any xm we condition upon,

the expected return on savings for an investor is bounded below by 1. This is due to the fact

that the term
E[θ/Π |xi ∼ Nx, xm ∼M(b)]

E[θ/Π |xm ∼ Nx, xm ∼M(b)]
− 1

18The derivation can be found in Proof 5 in the appendix.
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inside the integral represents the expected excess return of bonds over the safe asset, conditional

on investor i’s private information, and must be non-negative: if xi ≥ xm, the expected excess

return is positive, and the investors puts all her savings in bonds (i.e. she takes a long portfolio

share equal to 1); if instead xi < xm, the expected excess return is negative and the investor

takes a short position in bonds equal to −b < 0, and puts her savings plus the revenues from

short sales into the safe asset. Second, whenever the price signal is fully revealing, all uncertainty

is resolved, bonds and the safe option are equivalent assets with a deterministic payoff, bond

excess returns are zero, and the whole integrand in equation (35) cancels out.

Integrating (35) once more with respect to the price signal distribution, we get the uncondi-

tional expectation of the return on savings as

E[Ri(bi) |b] =

∫

Supp(xm)

E [Ri(bi) |xm ∼M(b)] dFxm(xm,b)

where Fxm(xm,b) is the marginal c.d.f. of the market signal, whose p.d.f. is given by

fxm(xm,b) =





max{bcb − a b, 0} for xm = xmax
a(1+b)
σx

∑
Θ(xm,b) q(θ)φ

(
xm−θ
σx

)
for xm ∈ (xmin, xmax).

(37)

We can split the support of the market signal xm in two partitions: the interval [x−, x+] where

uncertainty is never resolved, and the region (xmin, x−)∪(x+, xmax) where the price signal is fully

revealing. As we have discussed in the previous paragraph, in the latter region investors get zero

excess returns from bonds. We thus integrate expected excess returns only in the former region,

where uncertainty remains:

E[Ri(bi) |b]− 1 =

∫ x+

x−

∫ +∞

−∞
w(xi, xm)

(
E[θ/Π |xi, xm]

E[θ/Π |xm, xm]
− 1

)
dFxi|xm(xi|xm,b) dFxm(xm,b)

(38)

A few things are worth noting. First, the unconditional expected excess return over the safe

asset is non-negative for the reasons illustrated in the previous paragraph. Second, expected

returns depend on APs and position bounds (i.e. b) through (i) the interval of non-revealing

price signals [x−, x+], (ii) the size of long and short positions investors can take, w(xi, xm,b),

(iii) the marginal distribution of the price signal, Fxm , and (iv) the amount by which inflation

depends on bond returns when in the fiscal dominance regime, α. Note that, conditional on

xm being in the non-revealing region, the ratio of conditional expectations and the conditional
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distribution of xi given xm do not depend on b.

The next subsections make specific assumptions about fiscal-monetary interactions and the

behaviour of inflation, and describe in detail the effect of APs on asset prices and expected

returns, savings, consumption and welfare.

4.2 Monetary Dominance

We now assume that the transfer policy between the government and the central bank is such

that the gross inflation rate is constant and equal to 1. That is, we assume a transfer policy such

that all profits and losses the central bank makes as a result of engaging in APs are fully rebated

to the government. In the wording and notation of Section 2.1, we assume full fiscal backing,

κ = 1, and allow α to vary with bcb.

As a result, the behaviour of savers becomes uninteresting, because the rate of return on

their savings is now equal to the first best level, and their savings and consumption decisions are

efficient. We thus focus solely on the effect of uncontingent APs on investors’ expected rate of

return.

In the case of investors, the inflation term disappears from the ratio of conditional expecta-

tions in equation (38). In Figure 3, the bottom row represents the inner integral of that equation,

i.e. the expected return from savings conditional on xm. The top row plots the marginal dis-

tribution of the market signal xm. Each column represents a different configuration of position

bounds and asset purchases. Computing the unconditional expected return from savings amounts

to integrating the product of these two objects over the whole support of the market signal xm.

In the first column we look at the baseline case with unit position bounds and no APs. The

marginal distribution of xm is symmetric around the prior mean and has support given by the

entire real line, since in this case there are no instances of full revelation and support truncations.

Expected excess returns are weakly positive, and have an asymmetric distribution that is skewed

towards the left. Understanding its shape is not a straightforward exercise, so we now discuss one

by one the different mechanisms that drive it. First, the p.d.f. of the private signal conditional

on the market signal (see equation (36) moves in the same direction of, but less than, the market

signal itself. This implies that the probability investor i is optimistic and buys bond (i.e. xi ≥ xm)

is decreasing in xm. Second, investor i’s excess returns E[θ|xi, xm]/E[θ|xm, xm]− 1 belong to the

range [0, θH/E[θ|xm, xm]− 1] as xi moves inside the [xm,+∞) interval. These two observations

combined help us explain the behaviour of expected excess returns condition on xm. When

xm → ∞, excess returns tend to zero: it’s less likely the investor will be more optimistic than
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Figure 3: Marginal distribution of the market signal (top row) and expected excess return from saving
in bonds (bottom row) as a function of the market signal xm. The x axis displays values of xm within
5 standard deviations of its marginal distribution. The light gray lines in the middle and right columns
represent the case illustrated in the left column, with unit bounds and no APs.

the marginal agent, and even if she is, there is little upside to be made by buying the bonds if

the price is close to its highest value θH . As xm decreases, the probability that investor i receives

a signal xi ≥ xm grows, and the range of excess returns that may realise in such cases becomes

wider and populated with higher values: as the equilibrium price drops, there is more upside to

be made when receiving a high private signal. But as xm decreases, so does the density of xi|xm.

When xm becomes low enough, the probability mass over signals that correspond to high excess

returns shrinks towards zero. As xm → −∞, expected excess returns converge to zero, as the

investor makes positive returns that are significantly above zero only when she receives private

signals that are very large and have low probability.

The second column of Figure 3 plots the case where investor savings (i.e. the long position

bound) are larger than unity. Larger savings imply the net supply per investor decreases. This

shrinks the support of the market signal: all values of xm to the left of the first vertical dotted

line fall out of the support, the values in between the vertical lines are now only compatible with
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θL, and the remaining values are compatible with both values of θ. This explains why the density

of the market signal has a discontinuous jump, and why expected excess bond returns fall to zero

in the region where information is fully revealed. As is clear from equation (37), the reduction

in the density of xm inside the fully revealing region is balanced by an increase in probability

mass inside the non-revealing region. While the changes in the support and revealing regions

of xm clearly point to a reduction in the expected excess return from savings, the increase in

probability mass in the non-revealing partition of xm goes in the opposite direction.

The third column of Figure 3 plots the case where the central bank is doing non-contingent

APs. The effect is very similar to that of an increase in investors’ savings, with one important

difference: there is no adjustment in the probability density function of the market signal in the

non-revealing region. This happens because APs reduce the probability that the market will

be active, so rather than observing a “redistribution” of probability mass from the left to the

right, this mass simply disappears and goes into the unconditional probability that the market

is passive, which is 1− P0 = 1− bcb. This implies that the effect of APs on the expected return

from savings is unambiguously negative.
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Equilibrium savings and returns. Having computed E[Ri(bi) |b], we can look for an equilib-

rium of the economy, which we illustrate in Figure 4. An equilibrium is given by the intersection

between two curves and represented by round markers. The first curve, depicted in black, rep-

resents investors’ supply of savings ai as a function of their expected return E[Ri |b], which can

be derived from Euler equation (17), and is increasing and concave. The second set of curves

(dotted, dashed and dash-dotted line), represent the expected return from savings E[Ri(bi) |b]

33



as a function of their level ai and of the central bank asset purchase policy bcb. We can show

that this relationship is decreasing. The smaller the net supply of the bonds, because of higher

long position bounds or larger APs, the smaller the excess returns investors expect to make.

Importantly, expected returns are decreasing in both position bounds ai and APs bcb, which

implies that both the equilibrium level and the expected return of savings are decreasing in the

central bank asset purchase policy. That is, the higher bcb, the closer to 1 the returns, and the

larger first-period consumption.

In this setting, the optimal AP policy is to set bcb as high as possible, to bring returns down

to their efficient level of 1, and consumption up to its efficient level of one. This crucially relies

on the fact that central bank profits or losses are rebated back to the government, and in turn

to the household via lump-sum taxes. We illustrate this aspect in detail in the next paragraph,

and then move to consider a setting where central bank losses create a welfare loss, creating a

non-trivial trade-off for the central bank.

Central bank profits and losses. Like investors, the central bank makes profits or losses

from asset purchases. Before we discuss these in detail, we must specify at what price the central

bank is buying when bcb > S̃ + a b and the market is passive. In such an instance, investors

would know the true value of θ because they always observe bcb, and know that it is equal to

gross supply whenever it is smaller than its upper bound bcb. If b > 0, there will be investors

selling the bonds short in the market, and since they observe S̃, the price must equal θ. We

interpret the case where the short-selling bounds are equal to zero as the limit of that where

b→ 0, and so we continue to assume that R = 1/θ when S̃ < bcb− a b. This implies that, in this

scenario, the central bank makes zero profits, because it buys at the full information price.

We can now characterise the expected excess return (over the risk-free rate) of central bank

asset purchases. Such return is illustrated in Figure 5 and is formally given by

E[bcb (Rθ − 1) |b] = bcb

∫ x+

x−

(E[Rθ |xm ∼M(b)]− 1) dFxm(xm,b)

= bcb

∫ x+

x−

(
E[θ |xm ∼M(b)]

E[θ |xm ∼ Nx, xm ∼M(b)]
− 1

)
dFxm(xm,b).

(39)

The figure plots the whole integral in equation (39), and depends instead on the equilibrium

bond price that arises in the states where the market is active, i.e. when gross bond supply

exceeds the bcb, which happens with probability 1 − P0. In these states, the quantity of APs

is constant, so profits and losses are solely determined by the behaviour of the expected excess
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Figure 5: Central bank profits and losses as a function of uncontingent APs bcb.

return of bonds over the safe asset. As we show in equation (3.4) and the paragraph on ex-post

returns, the expression

E[Rθ |xm ∼M(b)]− 1 =
E[θ |xm ∼M(b)]

E[θ |xm ∼ Nx, xm ∼M(b)]
− 1 =

R

Rp

− 1

is generally different from zero because of the different conditioning sets. In Figure 2 we show

how the posterior probabilities behind these prices differ.19 From there, we can see that APs

create both a truncation and a fully revealing region in the left tail of the support of xm, where

R/Rp > 1 and bonds are under-priced. By taking away these states, APs reduce the expected

excess return of bonds, so it follows that the central bank makes losses when the market is active.

4.3 Fiscal Dominance

So far, we have developed the analysis under the assumption of monetary dominance, i.e. of

a setting of full fiscal backing when central bank profits and losses are fully rebated to the

government, and inflation is constant. We now make the opposite assumption and consider a

situation without any fiscal backing (κ = 0). As equation (6) shows, this implies that the rate of

return on money (inverse of the gross inflation rate) will be a weighted average of the real return

on bonds and on the safe asset, with weight bcb
m

. Savers’ money demand as will now depend,

through inflation, on central bank APs, the equilibrium bond price, and default. To find the

19As we discuss at length in Section 3, the posterior probability of θ = θH for the marginal agent with some
information set is a sufficient statistic for the equilibrium price or interest rate, so we discuss the former rather
than the latter.
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equilibrium of the two-period model we thus need to solve a two-dimensional fixed point problem:

savers’ and investors’ unconditional expectation of the total return on their savings, E[Rs] and

E[Ri], jointly depend on ai, as and on APs bcb; at the same time, both savings decisions depend

on the joint behaviour of the rate of return on bonds and money.

As we saw in the previous subsection, uncontingent APs generate expected losses for the

central bank, which are increasing in the size of the purchases. Under fiscal dominance, these

losses translate in expected inflation, which is also increasing in the size of the AP program.

This reduction in the rate of return of money has a welfare cost, because it decreases savers’

incentive to hold money, increasing their first-period consumption above the efficient level. At

the same time, APs retain their beneficial effect on the expected rate of return of bonds and

on investors’ first-period consumption. There is thus a trade-off between increasing investors’

welfare and reducing savers’, which under some conditions admits an interior solution, implying

that the optimal amount of APs is positive and finite.
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Figure 6: Equilibrium variables under fiscal dominance, as a function of uncontingent APs bcb. Vari-
ables related to investors and savers are represented by solid and dashed lines respectively. Parametric
assumptions: c∗ = 1, γ = 1 (log utility), q = 1/2, σx = 1/2, θL = 1/2, b = 0.

Figure 6 illustrates how equilibrium variables depend on the size of APs. The top-left panel

plots investors’ demand for bonds (which becomes their long position bound in the financial mar-

ket) and savers’ demand for money (which becomes the denominator of α̂). The consumption

of each set of agents is shown in the top right panel. The bottom-left panel plots the uncondi-

tional expectation of the rate of return of bonds and money. As explained, higher APs affect
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saving demand, rates of return and first-period consumption of investors and savers by bringing

each of these variables respectively towards and away from their efficient levels. The optimal

uncontingent AP program thus trades off distortions for savers and investors, with the result

that aggregate welfare (plotted in the bottom right panel) has an interior maximum at a level

b
∗
cb > 0.

5 Optimal Price-Targeting Asset Purchases Policy

So far, we have focused the analysis on uncontingent asset purchases, which are a particularly

simple type of program where the central bank targets the highest possible price. This allowed

us to explain as clearly as possible what are the effects of such policy on consumption, savings,

asset prices and welfare.

We have seen that, under fiscal dominance, uncontingent APs cannot eliminate all distortions.

We now move on to ask whether an AP policy targeting a different bond price can do better

than the optimal uncontingent policy studied in the previous subsection. We have shown that

the main channels through which APs have effects are (i) the identity of the marginal agent,

(ii) the information conveyed by the bond price, and (iii) the balance sheet of the central bank.

We will consider a policy that targets xm = x∗ (and Rn = R(q)) for aspect (i), and is neutral in

aspects (ii)-(iii).

To characterise this policy, we follow three steps: (i) understand how an AP policy can target

a certain marginal agent xn; (ii) derive the public signal associated with observing a market signal

equal to the target xn; (iii) build the mapping between marginal agent xn and market prices Rn

conditional on the given policy.

Implementation and feasibility. Targeting price Rn is equivalent to targeting some marginal

agent xn. Later, we will derive the equilibrium mapping between these two variables. Consider

the set of states where the central bank is buying (or is “active”) and R = Rn, xm = xn. Using

the market clearing equation (28), we can see that targeting xn is equivalent to targeting net

supply Sxn(θ) := Φ
(
θ−xn
σx

)
, and we can back out the amount of bonds the central bank is buying

bxn(θ, S̃) = S̃ + a b− a(1 + b)Sxn(θ). (40)
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It follows that the equilibrium price is at the target whenever

bcb ∈ [0, bcb] ⇔ S̃ ∈ S̃(θ, xn) (41)

where S̃(θ, xn) :=
[
a(1 + b)Sxn(θ, xn)− a b, bcb + a(1 + b)Sxn(θ, xn)− a b

]
denotes the set of

gross supply realisations such that APs are feasible and the price is at the target. This set has

two important features. First, we assume that xn, Rn are such that S̃(θ, xn) ⊆ [0, 1], so the set is

always contained in the support of S̃;20 second, its length is equal to bcb and is independent of θ.

Since gross supply is uniformly distributed, the unconditional probability of observing R = Rn

and an active central bank is independent of θ and given by

P (R = Rn, bcb ∈ [0, bcb]) = P (S = Sxn(θH , xn)) = P (S̃ ∈ S̃(θH , xn))

= P (S = Sxn(θL, xn)) = P (S̃ ∈ S̃(θL, xn)).
(42)

Information conveyed by the target price. Using the result from (42), it is straightforward

to show that the joint observation of a price equal to target and non-zero asset purchases does

not convey any information, and the posterior distribution of θ conditional on public information

alone is equal to the prior. Formally21

P (θ |Rn, bcb) =
P (bcb | θH , xn)P (xn | θH)P (θH)∑

j∈{H,L} P (bcb | θj, xn)P (xn | θj)P (θj)
= q. (43)

This implies that the beliefs of investor i conditional on her private information and on price

signal R = Rn are given by

E[θ |xi ∼ Nx, xn ∼M(bxn)] = E[θ |xi ∼ Nx].

Intuitively, this happens because in these states the marginal bond buyer is always the central

bank, who is not constrained by its position limits and can absorb any variation in bond supply,

making the price is inelastic to it. As we will see below, price become informative when the

marginal bond buyer goes back to being an investor again.

20This is true if

Sxn
(θ, xn) ∈

[
b

1 + b
,

1 + a b− bcb
a(1 + b)

]
∀θ ⇔ xn ∈

[
θH − σxΦ−1

(
b

1 + b

)
, θL − σxΦ−1

(
1− bcb + a b

a(1 + b)

)]
.

21The complete derivation can be found in Proof 7 in the appendix.

38



Mapping between xn and Rn. We now have all the elements to define the mapping between

the marginal investor xn and the target bond price Rn, which must satisfy

Rn =
1

E[θ |xn ∼ Nx, xn ∼M(bxn)]
=

1

E[θ |xn ∼ Nx]
. (44)

As usual, the marginal investor is defined as the agent who is indifferent between trading bonds

or the safe asset. The last equality uses our finding from the previous step, showing that when

the price equals the target and the central bank is active, agents only condition on their private

signals. It follows that Rn is defined as the expected bond payoff according to the public beliefs

of the marginal agent who receives the private signal xn.

Information and prices away from target. We now consider cases where the price target

is not achieved. A direct implication of (41) is that when S̃ /∈ S(θ, xn), then APs are at a corner

(bcb ∈ {0, bcb}) and the price is not at the target (R 6= Rn). In this set of states, the marginal agent

is not xn: either R < Rn and the central bank limit order is not executed (bcb = 0), or R > Rn

because APs are constrained by their upper bound (bcb = bcb). In both cases, the marginal bond

buyer is an investor rather than the central bank, the price is elastic to gross supply, agents

use the information contained in the price, and the equilibrium price and marginal agent are

determined by the following equation, as in the setup with uncontingent APs:

R =
1

E[θ |xm ∼ Nx, xm ∼M]
(45)

where xm is given by xm(θ, S(S̃, 0)) as per (28) and (29). That is, the price in this case is defined

by the market beliefs of the marginal agent with private signal xm. Note that, exactly as in the

case with uncontingent APs, there may be values of xm which correspond to only one value of

the fundamental θ, and thus imply there is full information revelation.

Optimal price target. As illustrated in Figure 2 and the accompanying analysis, the equilib-

rium prices in (44) and (45) are generated by different belief distributions, and therefore differ

from one another in the way described by Lemma 1. When supply is low, R < Rn and the

central bank does not intervene. As soon as R reaches and goes above the target, the central

bank limit order starts being executed. This implies that the equilibrium price function may

jump, because it is not determined by pm,m any more, but by ppubm instead. If Rn = R(q), then R

reaches the target when xm = x∗, at which point ppubm = pm,m. If instead Rn < (>)R(q), then bcb
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would have to jump up (down) to a positive (negative) level needed to affect net supply, since

posterior probabilities for the public are below (above) those for the market in such a region of

the state space. This is one reason why we consider R(q) as a target, the other being its budget

neutrality which we analyse next.

Illustration. Figure 7 shows an example of a price-targeting policy where bcb is large enough

that it never binds. In all panels, dashed and solid line represent θL and θH respectively, gray

lines plot the case without any APs, and gross supply S̃ is on the x-axis. The left panel plots

how much of the central bank limit order is executed; the central panel shows the marginal agent

signal; and the right panel illustrates the equilibrium interest rate. The vertical gray dotted lines

highlight the intervals of gross supply realisations for which the policy is active and the price is

at the target. Outside of this set, either APs are zero and R < Rn, or APs are at the upper

bound and R > Rn. In this particular case, the upper bound on APs is defined by the highest

possible purchase the central bank is making when θ = θH and S̃ = 1. This creates a bound an

APs, because if the central bank purchased a larger quantity when θ = θL, that would perfectly

reveal the fundamental. As a result, when there is a default and gross supply is above its feasible

set, there is full information revelation and R jumps to its highest value.

0 1S̃

−0.2

0.0

0.2

0.4

bcb(θ, S)

θH
θL

0 1S̃

x−

xn

xm(θ, S(S̃, bcb))

0 1S̃

1/θH

Rn

1/θH

R

Figure 7:

Central bank profits. We now have all the elements to ask what happens to the central bank

balance sheet, inflation, investors’ and savers’ rates of return, and welfare. When Rn = R(q), the

central bank makes profits or losses θ − R(q) ex post, but in expectation these are always zero:

if S̃ ∈ S(θ, xn), the central bank buys a varying quantity of bonds at the actuarially fair price,

so expected profits are E[Rθ] − 1 = 0; if APs are at the upper bound, there is full revelation,
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and expected profits must be zero because there is no uncertainty; in the remaining states, APs

are zero. We have thus proved that

1. price-targeting policies are belief-neutral,

2. a policy with target Rn = R(q) and upper bound bcb ≥ bx∗(θH , 1) is central-bank-budget-

neutral.

The consequence for inflation is that, while some inflation or deflation will happen ex-post, the ex-

ante value of expected gross inflation will be one, which means that savers’ consumption-savings

decision are efficient.

6 Conclusion

TBC

Appendix

A Irrelevance benchmark

We show that, when investors are unconstrained in their asset positions or have homogeneous

information, asset purchases are irrelevant as in Wallace (1981). To so, we assume a regime of

monetary dominance and consider the portfolio allocation problem of an agent with a generic

increasing (and possibly concave) utility function u(ci,2), generic bounds [b, b] on her portfolio

choice, and information set Ωi which contains the AP quantity bcb. Her optimal portfolio choice

is given by

b∗i = arg max
bi∈[b,b]

E [u (a [biRθ + (1− bi)1]− Ti) |Ωi] .

Let us take the first-order condition with respect to bi, and use the government and central bank

budget constraints (2) and (4) to replace taxes. We get

E
[
u′
(

(Rθ − 1) (a bi + bcb − S̃) + 1− ecb − S̃
)
|Ωi

]
+ µ− µ = 0 (46)

where µ, µ are the Lagrange multipliers of the position bounds constraints bi ≥ b and bi ≤ b

respectively. Equation (46) shows how investors’ second period consumption depends on their
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portfolio choice bi, government (exogenous) debt policy S̃, and central bank AP policy bcb.

Importantly, the equation highlights how the agent only cares about her net exposure to default

risk, which is given by her own demand a bi, minus the exposure implicit in taxes, which depends

on net public sector liabilities S̃ − bcb. Since gross supply is not observed, the investor will set bi

such that her observable exposure a bi + bcb satisfies her first-order condition.

Unconstrained asset positions. Consider first the case where position bounds never bind,

and therefore µ = µ = 0 for all investors i ∈ [0, 1]. This implies that the unconstrained version

of equation (46) holds with equality for each investor, who will adjust her individual demand

one-for-one with APs, to keep her desired net observable exposure constant.

It follows that, in this setting, APs are neutral because they perfectly crowd out each investor

in the same way. Mathematically,
∂b∗i
∂bcb

= 1 for all i. This is very different from what happens

in the main text, where all investors are constrained by their position bounds, and APs crowd

out a specific part of the investor distribution, namely the most pessimistic agents among those

that would buy bonds absent APs.

Homogeneous information. Consider now the case where position bounds may bind, and

all agents share the same information, Ωi = Ω for all i. This implies that the equilibrium bond

price is determined by the optimality condition of a representative investor, and the position

bound constraints must not be binding. We thus go back to the case where the unconstrained

version of equation (46) holds with equality for each investor, and APs perfectly crowd everyone

out by the same amount, resulting in neutrality.

B Proofs

Proof 1 (Proposition 1). With homogeneous investors, for the bond market to clear at any

instances two cases are possible. First, it has to be that RE[θ/Π] = 1 so that all investors

buy realized supply bi = S̃. In this case, it is also true that E[Ri(S̃)|Ω̄] = 1 and E[Π|Ω̄] = 1

because of (12) and (6). The second case is when clearing obtains with randomisations so that

a commonly observed sunspot coordinates the fraction of buyers needed to clear the market at

any state (θ, S̃). However, such a sunspot must be perfectly correlated with the state (θ, S̃),

so investors will trade under perfect information as a by-product. Under perfect information,

Rθ/Π = 1 so that Ri(S̃) = 1 and Π = 1 at any (θ, S̃) because of (12) and (6).
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Proof 2 (Lemma 2). Let p denote the probability that θ = θH for the marginal agent; then the

market clearing price is given by the following equation

(
p

(1− α̂)
1
θH
− α̂R + (1− p) (1− α̂)

1
θL
− α̂R

)
R = 1,

where α̂ := (1− κ)α. The fix point equation can be rewritten as

(Rα̂θH − 1) (Rα̂θL − 1)

θL + pθH − pθL −Rα̂θHθL
−R (1− α̂) = 0

or, provided θe := θL + pθH − pθL 6= 0 and θp := θHθL 6= 0,

(−α̂θp)R2 + ((1− α̂)θe + α̂θs)R− 1 = 0,

with θs := θL + θH . The only solution positive and smaller than 1/θL is

R (p) =
(1− α̂)θe + θsα̂−

√
((1− α̂)θe + α̂θs)2 − 4α̂θp

2α̂θp

where we can show R (1) = 1/θH , R (0) = 1/θL. In fact, one can verify that

(1− α)θe + θsα−
√

((1− α)θe + αθs)2 − 4αθp

2αθp
<

1

α

(1− α)θe + θsα− 2θp <

√
((1− α)θe + αθs)2 − 4αθp

((1− α)θe + θsα− 2θp)2 − ((1− α)θe + αθs)2 + 4αθp < 0

4θp (α + θp − θsα + θeα− θe) < 0

α− θe + θp + θeα− θsα < 0

α− (θL + p (θH − θL)) + θHθL + (θL + p (θH − θL))α− (θH + θL)α < 0

α + pθL − θL + pαθH − pθH − αθH − pαθL + θHθL < 0

α + pθL − θL + pα− p− α− pαθL + θL < 0

−p (1− α) (1− θL) < 0.
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The derivative of the equilibrium return with respect to p is given by

∂R

∂p
= − (θH − θL) (1− α̂)√

((1− α̂)θe + α̂θs)2 − 4α̂θp
R < 0.

By using L’Hopital rule at α̂ = 0 one can show limα̂→0R = 1
θe

. Moreover, we have

∂R

∂α̂
=

1

α̂

θeR− 1√
((1− α̂)θe + α̂θs)2 − 4α̂θp

< 0,

since

(1− α)θe + θsα−
√

((1− α)θe + αθs)2 − 4αθp

2αθp
<

1

θe
,

holds if and only if

(1− α)θ2e + θeθsα− θe
√

((1− α)θe + αθs)2 − 4αθp < 2αθp

(1− α) θ2e + θeθsα− 2αθp < θe
√

((1− α)θe + αθs)2 − 4αθp
(
(1− α) θ2e + θeθsα− 2αθp

)2
< θ2e

(
((1− α)θe + αθs)2 − 4αθp

)
(
(1− α) θ2e + θeθsα− 2αθp

)2 − θ2e ((1− α)θe + αθs)2 + 4αθpθ2e < 0

4θpα2
(
θp + θ2e − θs+e

)
< 0

θp + θ2e − θs+e < 0,

θHθL + (θL + p (θH − θL))2 − (θL + p (θH − θL)) (θH + θL) < 0,

or

−p (θH − θL)2 (1− p) < 0,

where notice V arp (θ) = p (θH − θL)2 (1− p) > 0 always.

Proof 3 (Lemma 1). The repayment probability held by agent i holding an information set Ωi is

P (θH |xi, xm) =

q φ

(
θH−

(
σ2m
σ2x

xi+
σ2m
σ2x

xm+
σ2m
σ2y

y

)
σm

)

q φ

(
θH−

(
σ2m
σ2x

xi+
σ2m
σ2x

xm+
σ2m
σ2y

y

)
σm

)
+ (1− q)φ

(
θL−

(
σ2m
σ2x

xi+
σ2m
σ2x

xm+
σ2m
σ2y

y

)
σm

) (47)
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whereas the one held by a public observer is

P (θH |xm) =

q φ


 θH−

(
σ2p

σ2x
xm+

σ2p

σ2y
y

)
σp




q φ

(
θH−

(
σ2p

σ2x
xm+

σ2p

σ2y
y

)
σp

)
+ (1− q)φ

(
θL−

(
σ2p

σ2x
xm+

σ2p

σ2y
y

)
σp

) (48)

where

σ2
m :=

1

2σ−2
x + σ−2

y

and σ2
p :=

1

σ−2
x + σ−2

y

denote the conditional standard deviation of investors and public observers respectively.

We note that

P (θH |xi = xm, xm) =
q

q + (1− q)κm
where

κm :=

φ

(
θL−

(
2
σ2m
σ2x

xm+
σ2m
σ2y

y

)
σm

)

φ

(
θH−

(
2
σ2m
σ2x

xm+
σ2m
σ2y

y

)
σm

) = e
− 1

2σ2m

((
θL−

(
2
σ2m
σ2x

xm+
σ2m
σ2y

y

))2

−
(
θH−

(
2
σ2m
σ2x

xm+
σ2m
σ2y

y

))2
)

=

= e
1

2σ2m
(θH−θL)

(
θH+θL−2

(
2
σ2m
σ2x

xm+
σ2m
σ2y

y

))
.

Performing analogous computations, we can write:

P (θH |xm) =
q

q + (1− q)κp
,

where

κp = e
1

2σ2p
(θH−θL)

(
θH+θL−2

(
σ2p

σ2x
xm+

σ2p

σ2y
y

))

from which the limit statements can be easily proved. Then we verify that x∗ is the solution to

1

2σ2
m

(θH−θL)

(
θH + θL − 2

(
2
σ2
m

σ2
x

xm +
σ2
m

σ2
y

y

))
=

1

2σ2
p

(θH−θL)

(
θH + θL − 2

(
σ2
p

σ2
x

xm +
σ2
p

σ2
y

y

))
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which happens when x∗ = (θH + θL)/2 at which

κp = κm = e
1

σ2y
(θH−θH)

(
θH+θL

2
−y
)
.

As a result,

P (θH |xi = x∗m, x
∗, y) = P (θH |x∗, y) =

q

q + (1− q)e(θH−θL)
(
θH+θL

2
−y
)

1

σ2y

,

which are equal to the prior q in the limit σ2
y →∞.

For xm < x∗ it is easy to check that the right hand side is larger than the left hand side, which

proves the inequality statement.

Finally, the maximal distance between the two posteriors obtains when

∂P (θH |xi = xm, xm)

∂xm
=
∂P (θH |xm)

∂xm
⇒

−q(1− q)∂κm
∂xm

(q + (1− q)κm)2 =
−q(1− q) ∂κp

∂xm

(q + (1− q)κp)2

and since
∂κm
∂xm

= − 2

σ2
x

(θH − θL)κm and
∂κp
∂xm

= − 1

σ2
x

(θH − θL)κp

we get the two solutions x+ and x− as solution to

...

Proof 4 (Lemma 2). We can rewrite the average ex-post equilibrium return as

E[R(pm,m) θ ] =
[
P + (1− P )

( ∫ ∫ S+(θ)

S∗(θ)

R(pm(S, θ))

R(pm,m(S, θ))
dS

︸ ︷︷ ︸
>1

+

∫ S∗(θ)

S−(θ)

R(pm(S, θ))

R(pm,m(S, θ))
dS

︸ ︷︷ ︸
<1

)
dθ
]

where P denotes the cumulative probability that xm(θ, S) is fully revealing of θ.

By construction, both S−(θ) and S+(θ) strictly decrease (i.e. x−(θ) and x+(θ)) with bcb for

any θ. The proof obtains since at bcb = a b, for given θ, the upper boundary of the non revealing

region S− (resp. x+) reaches its minimum S− = 0 (resp. its maximum x+ → +∞), so that

marginal increases in bcb at a b will only shrink the range of S where R(pm) > R(pm,m) without

affecting the one where R(pm) < R(pm,m). The second part of the prof obtains since, for given

θ, at the limit S− → S+ → 0 (resp. x− → x+ → +∞), which we get as bcb → a(1 + b)
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it is E[R(pm,m) θ ] → 1, and marginal decreases in bcb at b will enlarge the range of S where

R(pm) < R(pm,m) pushing E[R(pm,m) θ ] below the natural rate of one.

Proof 5 (Derivation of the p.d.f. of xi conditional on xm in equation (36)).

f(xi|xm) =
∑

j

qjf(xi|xm, θj) =
∑

j

qjf(xi|θj)f(xm|θj)
1

f(xm)
=

=
∑

j

qj
a(1 + b)

σx
φ

(
θj − xi
σx

)
1

σx
φ

(
θj − xm
σx

)
1

f(xm)

=
∑

j

qj
a(1 + b)

σx/
√

2
φ

(
θj − xi+xm

2

σx/
√

2

)
1

σx
√

2
φ

(
xi − xm
σx
√

2

)
1

f(xm)

=
1

σx
√

2
φ

(
xi − xm
σx
√

2

)∑

j

qj
a(1 + b)

σx/
√

2
φ

(
θj − xi+xm

2

σx/
√

2

)
1

∑
j qj

a(1+b)
σx

φ
(
xm−θj
σx

)

=
1

σx
φ

(
xi − xm
σx
√

2

)∑

j

qjφ

(
θj − xi+xm

2

σx/
√

2

)
1

∑
j qjφ

(
xm−θj
σx

)

Proof 6 (Derivations behind equation (38)).

E[Ri(bi)] =

∫

xm∈[xmin,x−]∪[x+,xmax]

f(xm)dxm+

+

∫ x+

x−

∫ +∞

−∞
[w(xi, xm)E[Rθ |Ωi] + (1− w(xi, xm))1] dF (xi|xm) dF (xm) =

=

[
PH + PL +

∫ x+

x−

∫ +∞

−∞
f(xi|xm)dxidFxm(xm)

]
+

+

∫ x+

x−

∫ xm

−∞
b (E[Rθ |Ωi]− 1) dFxi|xm(xi) dFxm(xm)+

+

∫ x+

x−

∫ +∞

xm

(E[Rθ |Ωi]− 1) dFxi|xm(xi) dFxm(xm).

= 1 +

∫ x+

x−

∫ +∞

−∞
(1[xi ≥ xm]1 + 1[xi < xm]b)

(
E[Rθ |Ωi]− 1

)
dFxi|xm(xi) dFxm(xm).

+

∫ x+

x−

∫ xm

−∞
b (E[Rθ |Ωi]− 1) dFxi|xm(xi) dFxm(xm)+

+

∫ x+

x−

∫ +∞

xm

(E[Rθ |Ωi]− 1) dFxi|xm(xi) dFxm(xm).
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Proof 7 (Derivation of equation (43)). We use Bayes’ law to write

P (θH |xn, bcb) =
P (bcb|θH , xn)P (xn|θH)P (θH)∑

j∈{H,L} P (bcb|θj, xn)P (xn|θj)P (θj)

=
P
(
S̃ ∈ S̃(θH , xn) : bxn(θH , S̃) = bcb

)
P (S = Sxn(θH , xn)) P (θH)

∑
j∈{H,L} P

(
S̃ ∈ S̃(θj, xn) : bxn(θj, S̃) = bcb

)
P (S = Sxn(θj, xn))P (θj)

=
P (S̃ = bcb + a(1 + b)Sxn(θH , xn))P (S = Sxn(θH , xn)) P (θH)

∑
j∈{H,L} P (S̃ = bcb + a(1 + b)Sxn(θj, xn))P (S = Sxn(θj, xn)) P (θj)

=
P (S̃ = bcb + a(1 + b)Sxn(θH , xn))P (S = Sxn(θH , xn)) P (θH)

P (S̃ = bcb + a(1 + b)Sxn(θH , xn))P (S = Sxn(θH , xn))
∑

j∈{H,L} P (θj)
= q.

The last step exploits the result in (42), and implies most terms cancel out. In the previous steps,

we simply use the definition of bxn from (40) and that of S(θ, xn).
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Cúrdia, Vasco and Michael Woodford, “The central-bank balance sheet as an instrument

of monetarypolicy,” Journal of Monetary Economics, January 2011, 58 (1), 54–79.
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