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Abstract

We study central bank asset purchases (APs) of government debt in markets where

rational investors face position limits and observe private signals, asset prices, and policy

actions. We show that the elasticity of asset prices to APs depends on how these policies

affect investors’ disagreement by changing the way the market aggregates information. In

our model—in contrast with settings where investor heterogeneity is policy-invariant—APs

have sizable, non-monotonic effects on prices, and may lead to central bank losses that

imply implicit government financing. Heterogeneous beliefs also provide a microfoundation

for the optimality of APs.
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1 Introduction

The widespread adoption of large-scale asset purchase (AP) programs represents arguably the

most significant shift in monetary policy over the past two decades. While debate persists over

their general equilibrium effects, robust empirical evidence confirms that APs raise asset prices,

particularly in the markets directly targeted by the interventions, suggesting that aggregate

asset demand is downward-sloping. However, the specific microfoundations of the aggregate

price elasticity of asset demand are crucial for the evaluation of the risks associated with APs,

such as their impact on the balance sheets of central banks and governments, and their potential

disruptions to the price formation mechanism.

In theory, a downward-sloping aggregate demand curve exists insofar as investors have het-

erogeneous demand functions and limited capacity to absorb asset supply. This is evident in

primary sovereign debt markets, where investors submit different price-contingent demand sched-

ules. Such heterogeneity may either stem from structural features—such as preferences over risk,

maturity, or liquidity—or from dispersed beliefs about the fundamental value of the asset.1 The

difference is stark: while individual structural characteristics are unaffected by APs, beliefs

change with APs as investors learn from prices.

To the best of our knowledge, this is the first paper to characterize the effects of APs in

markets where downward-sloping asset demand arises from rational belief heterogeneity. We

show that APs have significant consequences—even within the narrow context of financial mar-

kets—because the price elasticity to the size of APs depends on how APs shape the aggregation

of dispersed information across investors through market prices.

The belief-based microfoundation of price elasticity leads to two main implications. First, the

impact of APs on asset prices is non-monotonic in the size of the intervention. APs raise prices by

crowding out the demand of more pessimistic investors, but may also trigger price drops because

they make prices more informative in states where the asset has a relatively low payoff. To fix

ideas, consider a scenario where a large sovereign debt purchase program is announced during a

period of high yield spreads. If the intervention fails to inflate prices, each investor interprets such

failure as more compelling evidence that others are pessimistic about fundamentals, generating

information that lets prices fall in equilibrium. The practical implication is that the size of

asset purchases that delivers the highest average price increase is intermediate, balancing the

upward effect of crowding out pessimistic investors against the downward effect of revealing

1See Cole et al. (2022, 2024) for recent evidence on the importance of information asymmetries and spillovers
in sovereign debt markets.
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weak fundamentals.

Second, APs generate a transfer of resources from the central bank to the government—the

issuer of the asset—and private investors. This happens because learning from prices in the

presence of information frictions generates a wedge between the equilibrium price and the funda-

mental value of the asset. The sign of this wedge drives gains and losses for all financial market

participants. We show that, as a by-product of the intervention, APs mostly occur when the

asset is overpriced rather than underpriced, implying expected losses for the central bank and

gains for the government.

Importantly, under the alternative scenario in which investor heterogeneity is structural, asset

purchases consistently generate price increases and gains for the central bank—proportional to

the premium (such as term, liquidity, or other risk compensations) paid by the government

to investors.2 Our model thus highlights the potential drawbacks of implementing APs amid

heightened market uncertainty, offering a cautionary perspective for policymakers.

We model a financial market populated by a continuum of risk-neutral, rational investors who

trade government bonds. Both the bond payoff and its supply are stochastic and imperfectly

observed. Investors face constraints on their trading positions and form expectations about

the bond payoff—which we frequently refer to as the “fundamental” of the economy—based on

private signals and the publicly observable equilibrium bond price. Given the supply of bonds,

the equilibrium price is determined by the beliefs of the marginal investor—defined as the one

who makes zero gains in expectation.

Learning from prices generates an externality, as investors take the stochastic properties of the

price signal as given, while these are endogenous to their collective behavior. This externality

introduces momentum in bond prices, which overreact to the very same information content

they convey. The intuition is the following. When agents observe a relatively high bond price,

they infer that demand is likely to be high due to strong fundamentals. This further raises

demand and the bond price itself, in a general equilibrium loop of amplification that atomistic

investors do not internalize. As a result, bonds are overpriced by the market with respect to

their fundamental value when their price is high, and vice versa when bond prices are low. The

sign of this externality is state-contingent: there exists a positive (negative) wedge between the

price and the fundamental value of the asset if and only if the combined realization of the supply

and payoff shocks is above (below) a threshold level.

Central bank interventions through asset purchase policies affect both equilibrium prices and

2We develop this argument analytically in Section 6.
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the information they convey, via their impact on the wedge we just described. In the first part

of our analysis, we consider quantity-targeting AP policies, whereby the central bank commits

to purchasing a fixed quantity of bonds regardless of their price. Our two main results obtain.

First, APs raise the average bond price, but the effect is non-monotonic in the size of the

intervention due to two opposing forces. On the one hand, APs crowd out the demand of relatively

pessimistic investors. This has an effect on the average price that is positive and decreasing in

the program size because large interventions also crowd out relatively optimistic investors. On

the other hand, APs create a region of the state space where low bond prices provide a strong

signal that a low payoff is likely, which depresses the average price. The relative strength of

this revelation channel is increasing in the size of APs. It follows that the marginal effect of

APs on average bond prices is positive for small interventions (when crowding-out dominates)

and negative for large ones (when the revelation effect prevails). This result hinges on the

presence of the learning-from-prices externality and the associated wedge between bond prices

and fundamentals. In fact, we prove that if this externality is muted, APs have no impact on

average prices, regardless of their size, because crowding out and revelation effects would exactly

offset each other. Finally, we explore the model’s predictions when it is set to match the dispersion

of beliefs about long-term Treasury bond returns in the Survey of Professional Forecasters prior

to the Large-Scale Asset Purchase announcement of March 18, 2009. The model predicts an

average impact of APs on yields that can account for about half of the observed decline in real

yields on long-term Treasuries following the announcement.

Second, we characterize the distribution of gains and losses in the zero-sum game among

investors, central bank, and government that is implicit in the financial market we consider. On

average, the central bank incurs losses from quantity-targeting APs. This happens because APs

crowd out investors who are relatively pessimistic, leaving in the market those that are more

optimistic. This implies that the central bank is more likely to buy an overpriced—rather than

underpriced—asset. Investors, in contrast, earn positive average gains by exploiting their private

information and entering the bond market only when they expect to make net gains. Since

central bank losses are generally larger than investor gains, APs imply a net resource transfer

from the central bank to the government, a form of monetary financing. On the other hand,

in the absence of our learning-from-prices externality, the market price of government liabilities

remains tied to its fundamentals so that APs are balance-sheet neutral for the central bank, no

matter the size of the intervention.

In the second part of our analysis, we study price-targeting AP policies, where the central

bank purchases bonds to achieve a specific price target, subject to a constraint on the intervention
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size. The main difference with the previous setting is informational: when the central bank is

intervening and the equilibrium bond price equals the target, investors do not learn from the

price but rather from the size of APs, since the former is fixed by construction while the latter is

state-contingent. However, we show that the intervention size is uninformative, and the wedge

deriving from the learning externality vanishes. Intuitively, this happens because the central

bank is effectively the marginal buyer in the market, and since it has no private information,

equilibrium outcomes do not convey additional information to investors.

With price-targeting rules, APs are effective—in the sense that the average equilibrium price is

weakly larger than the target—when such target is close to the average value of the fundamental.

Moreover, when the target is exactly equal to such value, APs are costless because the central

bank is buying at a “fair” price, at which the learning wedge is zero. When, instead, the price

target is higher, average prices fall below target and APs are less effective. In addition, we show

that price-targeting APs are generally more expensive, i.e., generate larger central bank losses,

than the quantity-targeting alternative. This occurs because, when the price target is above the

fundamental value of the asset, the entirety of central bank purchases takes place when bonds

are overpriced.

In the final part of the paper, we extend our framework to a simple consumption-saving

model to address the issue of the optimality of APs. We assume a household sector that saves

via investors, who act as financial intermediaries. We show that the very same frictions that make

APs non-neutral in our model also provide a microfoundation for the rationale behind central

bank interventions, without resorting to additional frictions such as price rigidities or inequality

motives. Specifically, the assumptions of limited arbitrage and dispersed information generate

an inefficiency—conceptually different from that deriving from learning from prices—implying

that households save too much, because investors’ returns in the financial market exceed the

socially optimal return on savings. AP policies correct this inefficiency by reducing investors’

returns and stimulating current household consumption.

Related Literature. Our paper relates to the literature on rational expectations equilibria

where investors learn from prices, and to the literature on central bank intervention in macroe-

conomics and finance. To the best of our knowledge, this is the first paper characterizing the

workings of APs when rational investors have heterogeneous beliefs and learn from prices.

Angeletos and Werning (2006); Hellwig et al. (2006) studies the effect of the aggregation of

information by prices for equilibrium multiplicity. More recently, Albagli et al. (2024) shows that

the emergence of a wedge between prices and fundamental valuations is a general implication
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of learning from prices, which applies to all models of rational expectations equilibria (e.g.,

the vast literature using the CARA-Normal model), independently of the presence of position

bounds or risk-neutrality. They abstract from policy interventions, and show that the relevance

of the wedge relies on the asymmetry of the payoff distribution (see also Albagli et al. (2023)

and Bassetto and Galli (2019)). Instead, we focus on the effect of APs and present results that

are qualitatively robust to the shape of the payoff distribution, but specific to the presence of

position bounds (e.g. liquidity constraints) on investors—typical of crisis periods.

The interaction between APs and information frictions has been explored in several papers.

Iovino and Sergeyev (2023) focus on k-level thinking, a form of bounded rationality, as a source of

non-neutrality of APs in an otherwise frictionless model. In the model of Fontanier (2023), APs

reduce the incentives of structurally heterogeneous investors to acquire information, reducing the

likelihood of a sovereign crisis as prices becomes less sensitive to fundamentals. Candian et al.

(2023) study the information effect of foreign exchange interventions in an open economy where

investors’ expectations over-react to the information content of exchange rates. Mussa (1981),

Jeanne and Svensson (2007), Christensen and Rudebusch (2012) and Bhattarai et al. (2022)

study the signaling role of APs, whereby central bank interventions serve as a way to commit to,

or communicate, its current or future objectives. In all this work, investors either do not have

rational expectations or they do not learn from prices, the key variable affected by APs.

Workhorse models of APs in finance – for example, the seminal work of Vayanos and Vila

(2021), Hamilton and Wu (2012), Greenwood and Vayanos (2014), King (2013), King (2019), and

Costain et al. (2024) – typically builds on settings with limits to arbitrage and policy-invariant

heterogeneity in investors’ preferences for risk, maturity, or liquidity. The main goal of this

literature is to model the “local” impact of APs on the yield curve for different maturities, as

documented in a vast empirical literature.3 In our model, we abstract from different maturi-

ties and instead explore microfoundations for aggregate asset demand that rely on investors’

heterogeneity in beliefs which, in contrast to preferences, do change with AP policy.

The emphasis on the “local” nature of APs effect contrasts with the applied and quantitative

macroeconomics literature, which studies the general equilibrium effects of APs (see Bhattarai

and Neely (2016) and Kim et al. (2020) for a survey of the literature). This literature has

3A non-exhaustive list would include D’Amico and King (2013), Krishnamurthy and Vissing-Jorgensen (2011),
D’Amico and King (2013), and McLaren et al. (2014) for the Fed Large-Scale Asset Purchases; Eser and Schwaab
(2016) for the ECB Securities Markets Program (SMP); Altavilla et al. (2016) for the ECB Outright Monetary
Transactions (OMT); Krishnamurthy et al. (2017), Koijen et al. (2017), Arrata et al. (2020) and Bernardini and
Conti (2023) for various ECB AP programs; and Lucca and Wright (2024) for the yield-targeting policy of the
Reserve Bank of Australia.
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emphasized various forms of market segmentation and structural heterogeneity as the relevant

dimension of departure from the theoretical neutrality benchmark of Wallace (1981). Market

segmentation is essential for APs to induce “portfolio rebalancing” effects, i.e., a relative price

change across asset classes and maturities, which in turn have broader macroeconomic implica-

tions. These effects have been measured since the great recession of 2008-2009 in a flourishing

empirical literature, see Gagnon et al. (2011) for the US, Joyce et al. (2012) and Breedon et

al. (2012) for the UK, and more recently Koijen et al. (2021) and Altavilla et al. (2021) for the

Eurozone, among others. These effects have been microfounded and studied with quantitative

models by seminal papers like Cúrdia and Woodford (2011) and Gertler and Karadi (2015), fol-

lowed by more recent work.4 Further work by Cahill et al. (2013), Li and Wei (2013), Gilchrist

et al. (2015) and Rogers et al. (2018) has identified sizable “global” portfolio rebalancing effects

that pervade financial markets beyond those that are targeted directly by the program. Recent

work by Ray et al. (2024) combines a fully fledged macroeconomic framework with the insights of

the finance literature on preferred-habitat investors. Finally, another strand of the literature has

emphasized the role of APs in alleviating a lack of risk sharing or insurance on the side of firms

or households, in the context of incomplete markets economies with structurally heterogeneous

agents. See for example Gornemann et al. (2016), Auclert (2019), Luetticke (2018), Ravn and

Sterk (2021), Kaplan et al. (2018), Debortoli and Gaĺı (2017), Hagedorn et al. (2019) and Cui

and Sterk (2021).

2 Model

2.1 The Financial Market

We consider a one period economy. The financial market consists of a continuum of investors

facing a random supply of government bonds, and a given asset purchase rule by the central bank.

Investors share the same preferences, but differ in their beliefs about bond payoffs.5 Central bank

interventions affect prices and investors’ expected gains, bearing financial consequences for the

government and central bank.

4See Chen et al. (2012), Del Negro et al. (2017), Wen (2014), Campbell et al. (2012), Harrison (2017) and
Sims and Wu (2021).

5We compare our channel to a mechanism relying on heterogeneous term premia in Section 6.

6



Government. At the beginning of the period, the government issues a quantity S̃ of real bonds

that is uniformly distributed between 0 and 1; that is:

S̃ ∼ Uniform[0, 1]. (1)

The bonds are sold at the market-clearing price of Q, and at the end of the period pay a stochastic

real payoff θ̃, which potentially captures uncertainty relative to inflation or default. We assume

θ̃ is distributed according to the exogenous lottery

θ̃ =





θ̃H with probability q,

θ̃L with probability 1− q,
(2)

where q and 1 − q, respectively, denote the probability of a high and low payoff. Despite its

simplicity, this binary distribution allows for the asymmetry of bonds’ payoffs (they are left-

skewed if and only if q < 1/2). The lottery (2) captures all publicly available information at

the time of the intervention, potentially including any disclosure that the central bank may have

made in conjunction with it.

Investors. There is a continuum of measure one of bond investors that are risk neutral and

discount the end-of-period bond payoff by a common rate r. They do not observe the realization

of the aggregate shocks (θ̃, S̃), but receive noisy information about it. Specifically, we assume

that each investor receives a noisy private signal on the payoff present value θ := θ̃/(1 + r) that

is given by

xi = θ + σx ξi, (3)

where ξi ∼ N(0, 1) is independently and identically distributed across agents. We denote the

marginal distribution of private signal xi with N .6 Investors also receive two pieces of public

information: they observe the quantity of central bank APs bcb, and the bond price Q. We thus

denote the information set of each investor i ∈ [0, 1] with Ωi := {xi, bcb, Q}.7

Each investor i chooses her bond position bi, subject to position bounds [0, 1], to maximize

6The analytical expression for N is postponed to Appendix B.3.
7The distinction between the prior in (2) and the private signals in (3) is made for expository simplicity, but is

not essential. One could instead treat the beliefs resulting from updating (2) with (3) as a primitive distribution
of dispersed priors—as we do in the calibration for Figure 3—without affecting any of the results.
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the expected present value of net trading gains, which are given by

max
bi∈[0,1]

E[πinv,i |Ωi], (4)

where πinv,i := bi(θ −Q). As we will show later, the solution of the investor problem is a price-

contingent demand function bi = b(Ωi) taking the form of a limit order, i.e., the investor buys up

to the portfolio upper bound if the price is below her reservation value, and nothing otherwise.

In our model, the lack of individual arbitrage is due to the presence of exogenous position

bounds. This assumption captures the lack of liquidity typical of crisis times. Moreover, this is a

necessary assumption for APs to have an impact on prices. Other models of APs combine limits

to investors’ arbitrage with structural heterogeneity in some dimension, such as preferred-habitat

preferences (Vayanos and Vila (2021)) or risk-bearing capacity (Gertler and Karadi (2015)), to

cite some notable examples. Here instead we pair limited arbitrage with beliefs heterogeneity,

while keeping investors structurally homogeneous.8

It is worth noting that, although we will refer to S̃ as the gross supply of bonds, S̃ could

also be interpreted as an aggregate demand shock, accommodating the framework of Ray et

al. (2024). For example, one could assume a fixed unitary supply of bonds, and a stochastic,

non-fundamental demand of 1 − S̃ by noise traders. Broadly speaking, S̃ can be interpreted as

any aggregate shock orthogonal to bonds’ payoffs.

Central Bank. We are interested in studying the impact of central bank open market opera-

tions in financial markets. We consider two different policy rules: quantity- and price-targeting

asset purchases.

Quantity-targeting is the simplest rule, and consists in the central bank buying bonds up to

a fixed quantity target, independent of the market price, and subject to its demand being no

larger than the supply.

Definition 1 (Quantity-targeting APs). Under quantity-targeting APs, the central bank buys up

8The size of asset positions is fixed to one unit for simplicity, however it can be generalized (see footnote 11).
In Appendix B.1 we discuss the conditions under which central bank APs are neutral with respect to prices
and allocations, as in Wallace (1981), in models where investors do not have position bounds (as typical in the
CARA-Normal case).
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to an announced quantity target b at market price Q according to

bcb =





b if S̃ ≥ b

S̃ if S̃ < b.
(5)

When S̃ ≥ b, some supply is absorbed by investors, and the equilibrium bond price Q is de-

termined by the market. When instead S̃ < b, we assume that the central bank buys all the

supply at the price Qpas and the market remains “passive”. We set Qpas = θ to abstract from

institutional transfers between the central bank and the government.9

Price-targeting policies instead are such that the central bank buys bonds only at or below a

specific price target.

Definition 2 (Price-targeting APs). Under price-targeting APs, the central bank submits, si-

multaneously to investors, a limit order to buy up to a quantity bn of bonds if the price is below

a target Qn, and nothing otherwise, that is

bcb





= b̄n if Q < Qn,

∈ [0, b̄n] if Q = Qn,

= 0 if Q > Qn.

(6)

with Qn ∈ [θL, θH ] being the announced price target.

The central bank has no information about θ and, in fact, does not need to observe the state

(θ, S̃) to implement its price-targeting policy. It only needs to be able to condition its demand on

the bond price Q. As we will see, the quantity bcb that the central bank effectively purchases to

achieve the target will be an equilibrium outcome and, as such, provide information to investors.

9 To be clear, Qpas is an exogenous parameter of the analysis that can be modified without any loss of generality
or change in our main results. Nevertheless, we show in Appendix B.2 that the assumption Qpas = θ can be
microfounded with a trembling-hand limit argument. Specifically, we show that the assumption of an infinitesimal
disturbance in the market clearing mechanism implies that the equilibrium bond price is determined by market
forces even in states where S̃ < b, and is equal to Q = θ in such states.
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2.2 Market Clearing and Equilibrium

The bond market clearing condition is given by

∫ 1

0

bi di+ bcb = S̃. (7)

In a market equilibrium, the demand of investors equals the supply by the government net of

central bank demand bcb. We are now ready to give a formal definition of an equilibrium.

Definition 3. (Equilibrium) Given an AP policy rule as per (5) or (6), a homogeneous discount

rate r and distributions (1)-(2), a Perfect Bayesian Equilibrium consists of demand schedules

b(Ωi), a price function Q(θ, S̃, bcb), and posterior beliefs E[θ |Ωi] such that

(i) the demand schedules solve investors’ problem (4) given their posterior beliefs;

(ii) the price function Q(θ, S̃, bcb) clears the bond market, satisfying (7);

(iii) posterior beliefs satisfy Bayes’ law for all market clearing prices.

3 Quantity-Targeting Asset Purchases

In this section, we characterize the equilibrium in the financial market when the central bank

follows the quantity-targeting rule (5).

3.1 Investors’ Strategies and Price Signals

We start by working out how the demand by investors and the central bank determines the

equilibrium price and the information it contains.

Monotone threshold strategies. The posterior beliefs of investor i on the likelihood of a

high payoff are given by pi := Prob(θ = θH |Ωi), and are weakly increasing in the private signal

xi in the sense of first-order stochastic dominance. In particular, given that xi is the only piece

of information that is heterogeneous across investors, it is true that

xi ≥ xj ⇔ pi ≥ pj ⇔ E [θ |Ωi] ≥ E [θ |Ωj] ∀i, j,
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where E [θ |Ωi] = (θH−θL) pi + θL. This implies that each investor’s demand follows a monotone

threshold strategy of the form

bi(xm) =





1 if xi ≥ xm

0 if xi < xm,
(8)

where bi(xm) is the portfolio choice of agent i when the private signal threshold is xm, which is

endogenous to the equilibrium. By construction, xm coincides with the private signal received

by the marginal agent i = m, who is indifferent between buying bonds or not.10

Price signal mapping. We assume that a law of large numbers across investors applies as

in Judd (1985): for a given value of the fundamental, the mass of investors buying bonds is given

by the share of agents with a private signal larger than xm, that is

∫ 1

0

bi di = Prob(xi ≥ xm | θ) = Φ

(
θ − xm

σx

)
,

where Φ denotes the standard normal cumulative distribution function. It follows that, con-

ditional on xm, aggregate bond demand is a function of θ, since investors’ beliefs are centered

around it. We can thus rewrite the bond market clearing condition (7) as

Φ

(
θ − xm

σx

)
= S̃ − bcb. (9)

The left-hand side represents the mass of investors who buy bonds. The right-hand side represents

the net bond supply, that is, the gross government supply net of central bank purchases.11 For

brevity, we define S := S̃ − bcb and refer to it as net supply. For the market to clear given

(θ, S), the identity (or private signal) xm of the marginal agent must adjust, which suggests that

xm and Q are related. Henceforth, we focus on equilibria where Q and xm convey the same

10Note that investors’ optimal strategy (8) effectively amounts to the submission of a limit order, since there
exists a one-to-one mapping between the private signal threshold xm and the equilibrium price Q.

11 It is interesting to note that, with a generic upper position bound a > 1, the right-hand side becomes
(S̃ − bcb)/a. This relationship establishes a mapping between the size of asset purchases and investors’ capacity
constraints, with APs compensating for potential liquidity shortfalls during crisis periods. Accordingly, any
result derived from changes in the size of quantity-targeted APs can be equivalently understood as resulting from
changes in the depth of investors’ pockets, with APs held fixed.
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information.12 Rearranging terms, we can express xm as

xm(θ, S) = θ + σxΦ
−1(1− S). (10)

Equation (10) states that the marginal agent’s private signal xm must be equal, in equilibrium, to

a function that is linear in the fundamental shock θ, and decreasing and nonlinear in net supply

S. In other words, xm is an endogenous public signal of θ that aggregates private information

imperfectly, because of the noise introduced by unobservable net supply S. We thus refer to xm

as the price signal (or market signal).

The crowding-out and revelation effects of APs. Figure 1 illustrates the mapping from

fundamental and gross supply shocks (θ, S̃) and AP policy b to the equilibrium marginal investor

(or price) signal xm, as per equation (10). The figure plots the realization of xm on the y-axis,

as a function of the net supply shock S on the x-axis, for the two values of θ.13

0 1
Net supply S

M
ar

ke
t

S
ig

n
al
x
m

Without APs

θH
θL

0 1−b 1
Net supply S

x(b)

x(b)

With APs

Figure 1: The price signal as a function of net supply S and fundamental θ.

The left panel illustrates the case with no APs: in this case, gross and net supply coincide

(S̃ = S). When S → 1, the entire population of investors is needed to clear the market, so the

most pessimistic investor, i.e., the one with the lowest private signal (xi → −∞), is marginal.

12This is equivalent to focusing on equilibria with continuous price functions. Pálvölgyi and Venter (2015)
show that another class of equilibria with discontinuous and non-monotone price functions exists in noisy rational
expectations economies.

13We use a common parametrization for all the figures in the text. We use a value of b = 0.1 for the case with
APs, which is purely chosen for illustrative purposes. We set the other parameters to q = 0.53, θH = 2.5, θL =
−2.5, σx = 7, which are chosen to match some features of the data, as we explain in detail in Section 3.5.
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When instead S → 0, there is an infinitesimal amount of supply, and only the most optimistic

investor (xi → +∞) buys bonds and is marginal. For any realization of net supply away from

these limits, investors face an inference problem, since any observed price signal can be the result

of either high demand (due to a high payoff) and high supply, or low demand and low supply.

The right panel shows that positive APs (bcb = b > 0) have two main effects. First, there

is a crowding-out effect: for a given realization of the shocks (θ, S̃), APs reduce net supply so

that a relatively more optimistic investor is marginal, i.e., a smaller mass of buyers is needed to

clear the market. In particular, some investors on the left tail of the private signal distribution

will always be crowded out by APs and never be marginal, since the maximal net supply, 1− b,

becomes smaller than one. It follows that the support of the price signal distribution is truncated

from below and becomes [x(b),+∞), where x(b) := xm(θL, 1− b).

Second, there is a revelation effect specific to low payoff states: the truncation of the support of

S induced by APs gives rise to an interval of price signals [x(b), x(b)), with x(b) := xm(θH , 1−b),

which only occur when θ = θL. Perfect revelation is an artifact of our simple assumption of a

binary payoff, but the mechanism is more general. When the central bank is intervening, investors

understand that a smaller mass of buyers is needed to clear the market, so the market signal

will, in general, be higher. Observing a low market signal in this setting then implies a larger

likelihood of low payoffs than in the absence of APs.

Price signal distribution. We denote by Mb the distribution of the price signal xm condi-

tional on S̃ ≥ b, i.e., when the equilibrium bond price is determined by the market. The p.d.f.

is given by 1
1−b

fMb
(xm), where

fMb
(xm) =





1
σx

[
(1− q)ϕ

(
xm−θL

σx

)
+ q ϕ

(
xm−θH

σx

)]
for xm ∈ [x(b),+∞)

1
σx
(1− q)ϕ

(
xm−θL

σx

)
for xm ∈ [x(b), x(b)),

(11)

and ϕ denotes the standard normal probability density function. Note that the market signal

density is normalized by the probability P (S̃ ≥ b) = 1 − b that the market is “active”. The

remaining set of states has probability P (S̃ < b) = b, and is such that the central bank buys all

the supply, and investors do not trade bonds nor learn from the price.
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3.2 From Price Signal to Investors’ Beliefs

Having characterized how investors learn from prices, we now derive their posterior beliefs and

how the equilibrium price is determined. Before digging into it, it is useful to consider, as an

intermediate step, the posterior beliefs of an agent who only observes public information, i.e., the

price signal, and receives no private information. We will refer to these as the “public” posterior

beliefs.

Public posterior beliefs. The posterior probability of θ = θH conditional only on the public

price signal xm is given by standard Bayesian updating

p̂(xm) := P (θH |xm ∼ Mb) =





q ϕ
(

θH−xm
σx

)

q ϕ
(

θH−xm
σx

)
+(1−q)ϕ

(
θL−xm

σx

) if xm ∈ [x(b),+∞),

0 if xm ∈ [x(b), x(b)),

(12)

and reflects the fact that values of xm in the fully revealing region are only consistent with θL.
14

Importantly, these posterior beliefs satisfy the law of iterated expectations, i.e., E[p̂(xm)] = q

since they are conditional on public information only.15 It is worth noting that APs do not

directly affect the posterior repayment probability conditional on xm, but they do determine

the fully- and non-revealing partitions of the support of the price signal, as well as its density

function.

Investors’ posterior beliefs. We can now characterize the posterior beliefs of investor i

conditional on their information set Ωi = {xi ∼ N , xm ∼ Mb}, that is, on both their private

signal and the public price signal.16 Standard Bayesian updating yields

p(xi, xm) :=P (θH |xi ∼ N , xm ∼ Mb) =

=





q ϕ

(
θH−xi+xm

2
σx/

√
2

)

q ϕ

(
θH−xi+xm

2
σx/

√
2

)
+(1−q)ϕ

(
θL−xi+xm

2
σx/

√
2

) if xm ∈ [x(b),+∞),

0 if xm ∈ [x(b), x(b)).

(13)

14To lighten notation, we henceforth omit b as an argument when defining objects that are functions of the
price signal xm, since dependence on b is implicit in its effect on the distribution of xm.

15See Proposition 2 below for a different version of this statement, and Appendix A.2 for the proof.
16Henceforth, we always characterize conditioning sets by indicating from which distribution—N or Mb—each

realization is drawn. This is useful to avoid confusion and remind ourselves through which channels APs affect
posterior beliefs and learning from prices.
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Note that the investor posterior p is identical to the public posterior p̂—and equal to zero—in

the fully revealing region, and is different otherwise. The difference derives from the fact that

investors have two sources of information, while the public only has one, so the scale parameter

of the former is smaller than that of the latter by a factor of 1/
√
2.17

3.3 Market Prices and Fundamental Valuations

To characterize the equilibrium bond price, we consider the marginal investor whose private

signal is at the threshold (xi = xm), and is thus indifferent with respect to her bond position.

First, we define the posterior repayment probability of the marginal agent as

p(xm) := p(xi, xm)|xi=xm . (14)

It is easy to see from (12) and (13) that p(xm) ̸= p̂(xm), even though both depend solely on xm.

From the marginal investor’s indifference condition Q = E[θ |xi ∼ N , xm ∼ Mb]|xi=xm we

derive the equilibrium bond price

Q(p(xm)) = p(xm) θH + (1− p(xm)) θL, (15)

which is a simple linear function of the marginal investor’s posterior beliefs. This concludes our

derivation of how the state (θ, S̃) maps into the marginal investor’s signal via market clearing (10),

and how the latter maps into the equilibrium bond price via the marginal investor’s indifference

condition (15).

Using (15), we construct an alternative object, which we define as fundamental valuation,

and is given by the expected bond payoff once we plug in the public posterior beliefs we defined

in (12):

Q(p̂(xm)) := E[θ |xm ∼ Mb] = p̂(xm) θH + (1− p̂(xm)) θL. (16)

That is, Q(p̂(xm)) is the expected value of the fundamental θ, conditional on xm being drawn

from Mb. The following proposition characterizes the difference between equilibrium bond price

and fundamental valuation.

17The fact that both the private and price signals are given the same Bayesian weight follows from the assump-
tion that gross supply is uniformly distributed, which is made to preserve the normality of posterior beliefs in the
presence of APs.
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Proposition 1 (Single-crossing). For any xm ∈ [x(b),∞), we have that

Q(p(xm)) > Q(p̂(xm)) if and only if xm > x† :=
θH + θL

2
.

For any xm ∈ [x(b), x(b)), we have Q(p(xm)) = Q(p̂(xm)) = θL.

Proof. Postponed to Appendix A.1. ■

The proposition establishes that there exists a single crossing between market price and funda-

mental valuation occurring at x†, the unique value of the price signal that makes posterior equal

to prior probabilities, p(x†) = p̂(x†) = q.

In Figure 2, we plot the market price Q(p(xm)) in solid lines, and the fundamental valuation

Q(p̂(xm)) in dotted lines, as functions of the price signal xm, for the same two scenarios considered

in Figure 1. The figure shows that, when xm > x†, the market “overprices” bonds because the

equilibrium price is larger than the valuation, and “underprices” them otherwise.18 The effect of

quantity-targeting APs can be seen by comparing the baseline case of no central bank intervention

(b = 0) in the left panel, to the case with intervention (b > 0) on the right panel. First, by the

crowding-out effect, APs truncate the left tail of the support of market prices (i.e., x(b) increases

from −∞ to a finite number), excluding from the market the most pessimistic investors—those

with a private signal xi ∈ (−∞, x(b))—for any realization of the fundamental and supply shocks.

Second, by the revelation effect, APs imply that some price signal realizations in the left tail of

the support of xm—the interval [x(b), x(b))—become fully revealing of the low payoff state θL.

These channels affect both market prices and fundamental valuations in the same way.

A learning-from-prices externality. The difference between the fundamental valuation and

the market price can be understood as the effect of learning from prices. This has been charac-

terized in the form of a wedge by Albagli et al. (2023, 2024) for a general class of noisy rational

expectations equilibria in financial markets with learning from prices. As they show, the wedge

is also present in models where agents are risk-averse or have no position bounds.

The wedge could be understood as the effect of a “pecuniary” externality, in that atomistic

investors take as given the stochastic properties of the equilibrium price from which they learn,

while these properties actually depend on investors’ aggregate behavior. To gain a better under-

18We use the fundamental valuation as the benchmark against which we assess “mispricing”, because it satisfies
the law of iterated expectations and thus represents the actuarially fair value of the asset. Proposition 2 a few
pages below will formalize this statement.
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Figure 2: The equilibrium bond price Q(p(xm)) and fundamental valuation Q(p̂(xm)) as a function of
the price signal xm.

standing of the driver of this wedge, consider an increase in θ or a decrease in S̃. By the market

clearing condition (10), xm must increase, and so does the equilibrium price.19 Since investors

learn from prices, a change in the price signal implies that agents update upwards their posterior

beliefs about θH . This in turn increases bond demand for any price, and results in a further

increase in the equilibrium price, in a loop of general equilibrium amplification that atomistic

investors do not internalize.

To eliminate this externality and make the equilibrium price coincide with the fundamental

valuation, i.e., the risk neutral expected payoff, investors would need to coordinate in weighting

the private and the price signal according to half their equilibrium Bayesian weight (thus getting

rid of the
√
2 term in the expression for posterior beliefs (13)).

Whereas Albagli et al. (2023, 2024) study the implication of the wedge for the pricing of

assets with asymmetric payoffs, we consider the impact of APs on asset prices through their

effect on the distribution of the wedge. A key difference is that our results do not rely on the

asymmetry of payoffs.

19Depending on the shock, xm increases for different reasons: either because lower supply selects a different,
more optimistic agent, or because the same marginal agent receives a more optimistic signal when the fundamental
improves.
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3.4 Average Prices and Valuations

Let us turn attention to the average bond price and fundamental valuation, which are given by

the following unconditional expectations:

Qqt(b) :=
1

1− b

∫ +∞

x(b)

Q(p(xm))fMb
(xm) dxm

Q̂qt(b) :=
1

1− b

∫ +∞

x(b)

Q(p̂(xm))fMb
(xm) dxm.

The contrasting effect of APs on these unconditional averages can be grasped intuitively by

looking back at Figure 2 and its discussion: APs increase bond prices and valuations because of

the crowding out of pessimistic investors, and decrease them through the creation of a revealing

region. The following proposition characterizes the overall reaction of the average price and

valuation to the size of APs.

Proposition 2 (Average price and valuation). The average valuation is equal to the prior mean

of the fundamental and is independent of APs, that is,

Q̂qt(b) = E[θ] for all b ∈ [0, 1]. (17)

The average price is a function of APs and is given by

Qqt(b) = E[θ] + ∆(b) for all b ∈ [0, 1], (18)

where the average wedge

∆(b) :=
θH − θL
1− b

∫ +∞

x(b)

(p(xm)− p̂(xm)) fMb
(xm) dxm, (19)

has the following properties: it is a single-peaked function of the AP size b, it is positive for b

large enough, ∆(0) ≥ 0 if and only if q ≤ 1/2, and limb→1∆(b) = 0.

Proof. See Appendix A.2. ■

The first important result of the proposition is that APs have no effect on the fundamental

valuation, because the crowding-out and revelation effects exactly offset each other. It follows

that the unconditional expected valuation equals the average payoff, regardless of central bank

intervention, as a consequence of the law of iterated expectations.
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The second and main result of the proposition is that the average price Qqt(b) differs from

the fundamental valuation, and is an inverse U-shaped function of APs. Equation (18) provides

an intuitive representation for the difference between the average price and the average payoff

E[θ], which must come from the average wedge, denoted by ∆(b). The existence of this wedge

and the comparison between Q̂qt and Qqt clearly show that APs are non-neutral, with respect

to the average price, because of the learning-from-prices externality. The proposition states two

key properties of the average wedge. First, its value in the absence of APs has the same sign as

the skewness of the payoff distribution.20 Second, the average wedge is a single-peaked function

of the size of the AP policy. In other words, the marginal effect of APs on the average bond

price is positive provided that the size of the intervention is sufficiently small, and negative

otherwise. This result is illustrated by the left panel of Figure 3, which plots with a solid line

the average wedge ∆(b) as a function of the size of the AP program. The intuition behind this

result can be understood by referring back to Figure 2, where the conditional value of the wedge

is the difference Q(p(xm)) − Q(p̂(xm)). The right panel shows that small interventions tend to

crowd out relatively more pessimistic investors, removing states where bonds are underpriced

by the market. In contrast, sufficiently large interventions crowd out less pessimistic investors,

eliminating states where bonds are overpriced. As a result, APs raise the average wedge (i.e.,

the bond price) in the former case, and lower it in the latter. The practical implication of this

result is that the size of asset purchases (APs) that maximizes the average price increase is

intermediate, balancing the benefit of crowding out pessimistic investors against the downside of

revealing low fundamental states.

3.5 Magnitudes and Interpretation

The analytical proposition above outlines our main result on the impact of APs on asset prices,

but does not assess whether the implied price elasticity is empirically significant. To provide a

first pass on this question, we set our stylized model to target key aspects of the U.S. Federal

Reserve’s Large-Scale Asset Purchases announcement on March 18, 2009 (the first including

Treasuries, LSAP1 henceforth). We show that the model-predicted magnitudes are empirically

plausible—even though the framework is not designed for quantitative accuracy. This exercise

also provides a concrete interpretation of our model primitives in terms of data.

We calibrate model parameters to match the Q1-2009 distribution of inflation forecasts from

the Survey of Professional Forecasters (SPF) for average 10-year inflation. This maps into dis-

20This is consistent with the main result of Albagli et al. (2024).
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Figure 3: The left panel plots the average wedge as a function of the AP size; the right panel plots the
distribution of investors’ forecasts in the SPF for Q1 2009 (circles) and in our model (solid line). The
parameter values are: θH = 2.5, θL = −2.5, q = 0.53, σx = 7.5.

agreement about 10-year real Treasury yields, as the nominal yield is publicly observed. The

binned empirical distribution of SPF forecasts is represented by circles in the right panel of

Figure 3. It captures a structurally slow-moving dimension of forecast disagreement.21

In terms of model counterparts, we interpret θ as the realized real gross payoff on 10-year U.S.

Treasury bonds, discounted by the risk-free rate r, andQ as their price. Thus, E[θ−Q(p(xm)) | xi]

represents the negative of the expected yield premium conditional on observing xi, averaged

across all possible xm states.22 We therefore interpret the analog of the SPF distribution of

average beliefs as the distribution of

E[θ −Q(p(xm)) | xi]
∣∣
b=0

= (θH − θL)

∫ (
p(xi, xm)− p(xm)

)
fM0|N (xm | xi) dxm, (20)

across all possible xi, where fM0|N is the conditional distribution of price signals given private

signals, under no APs (see Appendix B.4). This model-implied distribution is shown as the solid

line in the right panel of Figure 3.

According to an ex-ante perspective, we look at the average wedge ∆(b) = −(E[θ]−Qqt(b))

as capturing the realized yield premium averaged over all possible aggregate states xm, and look

21In Q1-2009, the distribution had a standard deviation of 0.6%, the same as in Q1-2010, both lying one
standard deviation (0.15) above the historical mean for the period (0.44) 1992-2024.

22Market clearing implies that this premium is expected to be zero for the marginal agent: Q(p(xm)) = E[θ |
xi, xm]|xi=xm

. Further details are collected in Appendix C.
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at its change before (b = 0) and after (b > 0) an AP intervention. In practice, Qqt represents the

price investors would agree upon ex ante—before aggregate and idiosyncratic shocks are realized.

This is consistent with our assumption that APs convey no new information about fundamentals,

or equivalently, that any such information is commonly known.

The left panel of Figure 3 shows how the average price Qqt—specifically, its wedge compo-

nent—responds to interventions of size b. The model predicts that intermediate-scale APs can

lower yields by up to 47 basis points. The dashed vertical line marks the LSAP1 intervention size

as a fraction of outstanding Treasury bonds.23 For this intervention size, the model predicts an

increase in Qqt, that is, a drop in yields of approximately 31 basis points (∆(0.25)−∆(0) ≈ 31),

about half of the 59 basis point decline in real yields observed around the LSAP1 announcement,

as documented by for example by Krishnamurthy and Vissing-Jorgensen (2011).

3.6 Asset Purchases and the Distribution of Gains

The existence of a wedge between prices and fundamentals due to learning from prices has

implications for how APs affect the distribution of gains and losses between the government, the

central bank, and private investors.

The expected gains of an investor conditional on price signal xm are given by

E[πinv |xm] =
∑

θ∈{θH ,θL}
Φ

(
θ − xm

σx

)(
θ −Q(p(xm))

)
P (θ |xm ∼ Mb), (21)

where θ − Q(p(xm)) represents the unitary gain or loss, and Φ((θ − xm)/σx) represents the

probability of being a buyer (i.e., of receiving a private signal above the price signal).24 Note

that we consider a representative investor because all investors are identical ex ante, i.e., before

receiving private information.

Central bank expected gains conditional on xm are

E[πcb |xm] = b
∑

θ∈{θH ,θL}

(
θ −Q(p(xm))

)
P (θ |xm ∼ Mb)

= b
[
Q(p̂(xm))−Q(p(xm))

]
,

(22)

23This is calculated as the announced “$300 billion of long-term Treasury securities” over the total amount of
marketable, non-indexed bonds and notes with over 5 years of residual maturity as of February 2009. Further
details are collected in Appendix C.

24By the law of large numbers, Φ((θ−xm)/σx) also represents the mass of investors buying the bond conditional
on θ and xm.
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Where the second line follows directly from the definition of the fundamental valuation in (16).

The expected gains of the government obtain residually, because of the zero-sum nature of the

financial market: E[πgov |xm] + E[πinv |xm] + E[πcb |xm] = 0, for any state xm ∈ [x(b),+∞).2526

The following proposition outlines some properties of these conditional gains.

Proposition 3 (Conditional gains and losses). The expected gains of investors, central bank,

and government conditional on the market signal xm and the AP quantity b have the following

properties:

• E[πinv |xm] > 0;

• for b ∈ (0, 1), E[πcb |xm] < 0 if and only if xm > x†;

• E[πgov |xm] > 0, if and only if xm > xg(b) where xg(b) > x† and x′
g(b) < 0;

for all xm ∈ [x(b),+∞) and b ∈ [0, 1).

Proof. Postponed to Appendix A.3. ■

The three panels in Figure 4 plot these conditional gains as a function of the market signal xm

for our baseline calibration. Gray and black solid lines respectively denote the case without

and with APs. Thin dashed lines refer to the no-wedge case, where transactions occur at the

fundamental valuation rather than the market price, which is a useful benchmark to illustrate

how results depend on the learning-from-prices externality.

Consider first the case without APs. The left panel shows that investors’ expected gains are

positive in all xm states, regardless of the presence of a wedge between prices and fundamentals.

Investors buy bonds only when they expect a payoff higher than their outside option of staying

put (which delivers zero gains with certainty). This is effectively a call option whose payoff is

positively correlated with the fundamental: conditional on xm, each investor is more likely to

buy when fundamentals are good, and supply is in turn high. These two factors together imply

that investors’ gains are strictly positive even in the absence of the wedge due to learning, as

shown by the dashed line in the left panel. In particular, positive gains are the result of limits

to individual arbitrage that are due to the presence of position bounds and dispersed beliefs.

25This interval of price signals corresponds to states where S̃ ≥ b. When instead S̃ < b and the market is not
active, we have that E[πinv] = 0 and E[πgov] = −E[πcb] = (θ −Qpas) b/2 = 0, since we assume Qpas = θ.

26The concept of trading gain or loss may be more natural for investors and the central bank than for the
government. When we refer to the latter, losses can be thought of as the “excess” cost of debt issuance on top of
its fundamental value.
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without APs (b = 0) and with APs (b = 0.1).

The learning-from-prices externality introduces an additional force that generates skewness in

the gains distribution: bonds are underpriced when xm < x†, which implies that investors’ gains

are larger than in the no-wedge case, and vice versa when xm > x†.

Consider now the case with APs, denoted by black solid lines. In contrast to investors, the

central bank buys unconditionally, making losses when xm > x† and gains otherwise, as the

right panel shows. The central panel shows that central bank losses result in net gains for the

government. In this sense, APs have the potential to engender implicit monetary financing, i.e.,

a transfer of resources from the central bank to the government. This result emerges because of

the existence of the wedge due to the learning from price externality. The effect of central bank

APs on investors’ and central bank gains is negative: the crowding-out effect truncates the left

tail of the gains distribution, and the revelation effect makes gains drop to zero in the adjacent,

fully revealing region. In the counterfactual where the externality is muted–which is plotted as

a dashed line in all the three panels–APs are balance-sheet neutral, generating neither gains nor

losses for the central bank, while government losses mirror investors’ gains. We state the effect

of APs on average—or unconditional—gains in the following proposition.

Proposition 4 (Average gains and losses). Average gains have the following properties:

• Average investor gains are positive and decreasing in APs;

• Average central bank gains are negative for any AP quantity if q ≤ 1/2, and for b large

enough if q > 1/2.
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• Average government gains are positive if APs are large enough, i.e., if b is such that

x(b) > xg(b).

• The average gains and losses of all players converge to zero as b → 1.

Proof. Postponed to Appendix A.4. ■

The proposition is illustrated in Figure 5: we plot the average gains of investors (dash-dotted

line), central bank (dotted line), and government (dashed line), as a function of the quantity

target of the AP policy. As in the previous figure, thin shaded lines denote these quantities in

the absence of the wedge due to learning from prices.
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Figure 5: Average gains by investors, the central bank, and the government, as a function of the size
of the AP program b. Thin shaded lines represent average gains for each player in the absence of the
wedge between bond prices and valuations.

As APs increase in size, investors’ gains fall and central bank losses rise, all to the benefit of

the government. In particular, as the proposition states, sufficiently large APs imply monetary

financing for the government. Net gains for the government emerge because a transfer of resources

occurs: i) directly from the central bank that buys government debt at an average loss, ii)

indirectly from investors, by reducing the scope for buying underpriced assets. As b approaches

one, all gains and losses converge to zero, because in most states the central bank is buying the

whole market at the perfect information price, and there are no net transfers to the government.

Again, these results are tied to the existence of the wedge, but are generic to the degree

of payoff skewness q. In the no-wedge case, denoted by thin shaded lines, the intervention is

balance-sheet neutral for the central bank, while investors’ gains are still decreasing in APs.
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4 Price-Targeting Asset Purchases

In this section, we explore the workings of price-targeting AP policies according to (6), where

the central bank submits a limit order to buy bonds up to a quantity bn if the price is below a

target Qn.
27 Most of our derivations for the case of quantity-targeting policies carry on to this

section, so we organize the presentation that follows around the key differences.

4.1 State Space Partitions

We have seen above that a quantity-targeting policy can be understood as partitioning the state

space of shocks (θ, S̃) into three distinct regions: one of full revelation, one where the market

operates under uncertainty, and one where the market remains passive. Price-targeting policies

perform a similar partition of the state space into three regions: one of full revelation, one where

the market operates under uncertainty, and one where the market price equals the central bank

target. In both cases, the last region is one where the equilibrium price formation mechanism is

disrupted. With quantity-targeting, this disruption arises as the central bank buys all the supply.

On the other hand, with price targeting, the equilibrium price is artificially held at its target

value as a result of the central bank intervention. We proceed by characterizing such regions.

To start, we recover from equation (15) the mapping from the equilibrium price Q to the

signal of the marginal investor

x(Q, σ) = x† +
σ2

θH − θL
log

(
1− q

q

Q− θL
θH −Q

)
(23)

where σ ∈
{
σx, σx/

√
2
}
depending on whether the relevant beliefs are those of the investors or

of the public. We define two values of interest:

• x̃n := x(Qn, σx/
√
2), which defines the price signal at which the equilibrium bond price is

equal to the target in the absence of APs, i.e., Qn = E[θ | x̃n ∼ N , x̃n ∼ M0];

• xn := x(Qn, σx), which defines the price signal at which the fundamental valuation is equal

to the price target in the absence of APs, i.e., Qn = E[θ |xn ∼ M0].

27We treat Qn as a policy parameter, though it could just as well reflect the central bank’s private valuation
of the asset. In that case, it should be interpreted as a publicly known signal embedded in the prior lottery 2.
What matters is that the central bank is ex-ante committed to it.
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We will focus on price targets such that Qn ≥ E[θ], which implies that xn ≥ x̃n ≥ x†.28 The pair

(x̃n, xn) fully characterizes the regions in which price-targeting APs partition the state space.

No-intervention region. This region is characterized by all combinations of fundamental

and supply shocks that deliver a price signal xm ≥ x̃n in the absence of APs, which implies

an equilibrium price larger than the target (Q ≥ Qn), and indeed no central bank intervention

(bcb = 0) as a result. It occurs with probability

P (Q ≥ Qn) = qΦ

(
θH − x̃n

σx

)
+ (1− q) Φ

(
θL − x̃n

σx

)
.

In these states, the equilibrium bond price is determined by the market in the way described in

the previous section, i.e., according to (15), with the posterior beliefs in (14), such that investors

learn from the price and the scale parameter in their beliefs is σx/
√
2.

Price target region. This region is characterized by the equilibrium price being equal to the

policy target (Q = Qn) and an AP quantity bcb ∈ [bn, bn], where (bn, bn) are bounds that we

derive below. It occurs with probability

P (Q = Qn) = 1− Φ

(
θH − x̃n

σx

)
. (24)

In this region, investors learn from both the equilibrium price Qn and the AP program size

bcb—which is endogenous to the equilibrium—that is needed to keep the price at the target. The

following proposition establishes this mapping.

Proposition 5 (Price-targeting APs). Let

bn(θ, S̃) = S̃ − Φ

(
θ − xn

σx

)
(25)

be the AP size that corresponds to price signal xn and state (θ, S̃). When the equilibrium price

28Restricting our analysis to the cases where Qn ≥ E[θ] ensures that the target can always be met without the
need for central bank asset sales. While asset sales—a form of quantitative tightening—can be understood as the
counterpart to reducing the scale of purchases, its analysis necessitates an explicit assumption about the central
bank’s initial bond holdings. For clarity and simplicity, we have chosen not to extend our discussion to this case.
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is at the target Qn, the size of central bank APs is given by

bcb =





bn(θ, S̃) if bn(θ, S̃) ∈ [bn, bn]

0 otherwise,
(26)

where bn := bn

(
θH ,Φ

(
θH−x̃n

σx

))
and bn := bn(θH , 1). We can state the following properties:

• conditional on Q = Qn, bcb is distributed as a Uniform[bn, bn], independently of θ;

• for all bcb ∈ [bn, bn], the market signals (Q = Qn, bcb) are uninformative, i.e.

E[θ |Q = Qn, bcb] = E[θ].

• xn is such that Qn = E[θ |xn ∼ N ],

Proof. Postponed to Appendix A.5. ■

The proposition establishes several properties of price-targeting APs. Let us just sketch the main

intuition here. Equation (25) derives the size of the central bank intervention needed to make net

supply consistent with a given xn. It shows that, conditional on θ, the distribution of bn(θ, S̃) is

uniform because it follows that of gross supply. For APs to not be fully revealing, any realization

of bn must be compatible with all values of the fundamental θ. The set of AP quantities that

satisfy this property is given by the interval [bn, bn]. It follows that the likelihood of observing

any bcb ∈ [bn, bn] is constant and independent of the fundamental θ. Standard Bayesian updating

then implies that

E[θ |xi ∼ N , Q = Qn, bcb] = E[θ |xi ∼ N ] for all bcb ∈ [bn, bn],

that is, the expected bond payoff for investor i, conditional on observing the public signals

Q = Qn and any bcb inside [bn, bn], is uninformative about θ. The indifference condition Qn =

E[θ |xn ∼ N ] finally pins down the marginal investor’s (or price) signal xn = x(Qn, σx) that is

consistent with the equilibrium price being equal to target and investors learning nothing from

public information. The intuition behind this uninformativeness result is that, when the price

target is achieved, the central bank becomes the marginal investor in the market. Since the

likelihood of its purchases is independent of θ, investors do not learn anything from observing

them.

It is worth discussing the fact that the lower bound bn is generally greater than zero, which

means a discontinuity exists at the margin when APs are implemented. To see why, consider
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a situation where the equilibrium price in the absence of APs is just equal to the target, i.e.,

the market signal is equal to x̃n and we are at the lower bound of the no-intervention region.

Consider now a marginal increase in gross supply, which makes the equilibrium price drop below

target and triggers central bank intervention. Such intervention implies a discontinuous drop

in the precision of investors’ beliefs, since the equilibrium outcome (the bond price and central

bank purchases) becomes uninformative. This makes investors’ demand shrink, which must be

compensated by further purchases by the central bank. Using (25), we get the interval of APs

larger than the minimal quantity we just discussed and compatible with a given value of θ, as a

function of gross supply. We can show that the interval corresponding to θL is wider than that

for θH , so the latter defines the range of AP quantities that achieve the price target, while its

complement is fully revealing of the fundamental θL and consists of the region we discuss next.29

Fully revealing region. This region is characterized by a price signal xm < x̃n, an equilibrium

price equal to the lower bound (Q = θL), and no central bank intervention (bcb = 0). It occurs

with probability

P (Q = θL) := (1− q)

[
Φ

(
θH − x̃n

σx

)
− Φ

(
θL − x̃n

σx

)]

As discussed in the previous paragraph, the presence of bounds to bcb generates cases where

investors have common knowledge that θ = θL. This happens when gross supply takes values such

that an intervention bcb /∈ [bn, bn] would be needed to sustain the price target. We slightly modify

rule (6) and assume that, in these instances, the central bank refrains from intervening, and the

market signal fully reveals the state. This assumption is innocuous, since these interventions

would happen at the perfect information price Q = θL and the central bank would make zero

gains.

An illustration. Figure 6 illustrates the equilibrium under a given price target level. The left

panel plots the equilibrium price as a function of the price signal with black solid lines, the mass

point where the price is equal to the target with a circle marker, and the equilibrium price and

fundamental valuation in the absence of APs with thick and thin gray lines, respectively. The

center and right panels respectively plot the price signal and central bank purchases as a function

of gross bond supply (on the x-axis) and the value of the fundamental (solid and dashed lines

29We focus on the case of a “natural” upper bound bn = bn(θH , 1), for simplicity. One could, of course,
exogenous set a lower value for it.
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Figure 6: Illustration of the workings of price-targeting APs. The price target for this example is set
at Qn = 1.71, where for reference (E[θ], θH) = (1, 3.35).

represent θH and θL, respectively). The gray lines represent the price signal in the absence of

APs in the center panel,30 and bn(θ, S̃), which is the “unconstrained” version of APs as per (25),

in the right panel. The no-intervention region is characterized by an equilibrium price above

both the target and the fundamental valuation for all price signals above x̃n, and APs equal to

zero. When the equilibrium price equals the target, it lies on the fundamental valuation line

because the public price signal is uninformative. In this region, the central bank expands APs

in response to changes in gross supply to sustain the target price as a market outcome, bcb is

inside the [bn, bn] interval, and the price signal is equal to xn. The extent of the full revelation

region is best understood by looking at the center and right panels. Full revelation never takes

place when θ = θH , and occurs in two instances When θ = θL: first, when gross supply is large

enough that the target price could only be sustained with APs larger than bn; second, for all

states where the marginal agent’s signal without APs drops below x̃n, and the target price could

only be sustained with APs smaller than bn.

4.2 The Distribution of Gains and Losses

We now characterize gains and losses under this class of AP policies. In the case of the central

bank, we only need to consider states where APs are positive, i.e., when Q = Qn, in which case

ex-post gains or losses are given by πcb(θ) = θ −Qn. Since the distribution of APs is uniformly

distributed and uncorrelated with the fundamental θ (see Proposition 5), average central bank

30Note that these curves coincide with the functions depicted in Figures 2 and 1.
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gains are a simple product of the per-unit gain or loss E[θ] − Qn, the average purchased size
bn+bn

2
, and the unconditional probability of hitting the target

E[πcb] = E[bcb(θ −Qn)] = P (Q = Qn)
bn + bn

2

(
E[θ]−Qn

)
. (27)

If Qn = E[θ], average gains are zero. This happens because the central bank is buying bonds at

their risk-neutral valuation, and the probability it does so is uncorrelated with the fundamental.

If instead Qn > E[θ], the central bank makes losses on average because it is intervening exclu-

sively in states where the wedge between bond prices and valuations is positive, i.e., bonds are

overpriced.

Investors’ average gains are given by

E[πinv] =

∫ ∞

x̃n

∑

j∈{H,L}
Φ

(
θj − x

σx

)(
θj −Q(p(x))

)
P (θj |x ∼ M0) fM0(x)dx

+ P (Q = Qn)
∑

j∈{H,L}
Φ

(
θj − xn

σx

)(
θj −Qn

)
qj,

(28)

where qH = q, qL = 1− q, and the first and second lines account for states in the no intervention

and price target regions, respectively. Two similarities with the case of quantity-targeting APs

are worth noting. First, the probability that investors enter the market is positively correlated

with bond payoffs, which implies investors’ gains are always non-negative. Second, the first line

of (28) coincides with average gains under quantity-targeting if x(b) = x̃n.

As before, the sum of the gains by the government, investors, and the central bank must equal

zero. The following proposition characterizes how price-targeting APs shape the unconditional

distribution of gains in the market.

Proposition 6 (Average properties of price-targeting APs). Price-targeting APs have the fol-

lowing properties:

i) The average size of APs is strictly increasing in Qn;

ii) Central bank average gains are weakly negative and decreasing in Qn;

iii) Investors’ average gains are positive, decreasing in Qn, and limQn→θH E[πinv] = 0;

iv) Government gains are positive if Qn is sufficiently large;

30



v) The average bond price as a function of the price target Qn is given by

Qpt(Qn) =
(
1− P (Q = Qn)

)
Qqt(b̃n) + P (Q = Qn)Qn (29)

where b̃n = Φ((x̃n − θH)/σx) is the level of quantity-targeting APs that delivers x(b) = x̃n.

The average price Qpt(Qn) is such that Qpt(E[θ]) > E[θ], Qpt(θH) = θH , and Qpt(Qn) ≤ Qn

for Qn large enough.

Proof. See Appendix A.6. ■
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Figure 7: Average bond price, asset purchases, and gains with price-targeting APs.

Statement v) of the proposition characterizes the average price under price-targeting as a weighted

average of the target, and the average price under a quantity-targeting program that delivers

the same partitions of the state space. This is useful since we already derived the property

of Qqt. Figure 7 illustrates the proposition. The left, center and right panel respectively plot

the average equilibrium bond price, the average size of the price-targeting AP program, and

average gains, all as a function of the central bank price target Qn. The shape of the average

equilibrium price Qpt as a function of Qn is the result of two contrasting forces, which can be

seen from equation (29). First, in the absence of the learning-from-prices wedge we know that

Qqt(b̃n) = E[θ], which implies that the average price (represented by a gray solid line in the left

panel) is never larger than the target (Qpt(Qn) ≤ Qn), and is equal to it at Qn = {E[θ], θH}.31

31Note that, when APs target the highest possible price (Qn = θH), the central bank must intervene and buy
the whole bond supply at all times (P (Q = Qn) = 1), which implies its average size equals average gross supply

(E[bcb] = E[S̃] = 1/2).
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Second, the learning-from-prices wedge is strictly positive in all states in which the central bank

does not intervene, i.e. ∆(b̃n) > 0, and its average value is decreasing in Qn and converges to

zero as Qn → θH , because so does the measure P (Q > Qn) of the no-intervention region. The

combined effects of these two forces implies the single-crossing result in the last statement of the

proposition.

Statement ii) of the proposition establishes that central bank gains are zero at a target of

E[θ], and negative above it. The former part of this statement implies that price-targeting APs

can inflate average bond prices to some extent, at no balance sheet cost. The latter part states

that the higher the price target, the larger the required central bank intervention, and the larger

the associated losses. As equation (27) shows, losses are inevitable because the central bank is,

by construction, buying bonds only when they are overpriced by the market.

Statements iii) and iv) of the proposition say that investor and government gains behave as

in the case of quantity targeting APs. The former converge to zero as Qn → θH , because so does

the extent of investors’ participation in the market. This implies that the government ultimately

benefits from the intervention of the central bank, because it gets large positive resource transfers

from it. In summary, the key difference from the quantity-targeting case is that the central bank

must always pay the marginal investor’s valuation to intervene, leading to significant losses when

attempting to purchase the entire market.

5 Welfare Rationale for Asset Purchases

In this section, we extend our framework to address the natural question of what frictions justify

central bank intervention through large-scale asset purchases. These frictions are often modeled

using nominal rigidities, a zero lower bound on interest rates, or a financially constrained banking

sector—none of which are essential for our mechanism. We demonstrate that the same frictions

underpinning our approach—namely, limited arbitrage and dispersed information—are sufficient,

on their own, to generate inefficiencies in a simple consumption-saving model where the investors

are financial intermediaries. Specifically, investors make inefficiently high average gains in the

financial market. This inefficiency stems from dispersed information and limited arbitrage, which

is distinct from the externality in learning from prices, i.e., is present even without any wedge

in prices. AP policies can effectively fight this inefficiency and lower investor gains by affecting

the equilibrium price wedge that arises from the learning externality.
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Environment. Time is discrete and there are two periods, t = 0, 1. We consider an economy

populated by a government, a central bank, and two continua of measure one of households

and investors. For simplicity, we assume there is no time discounting. In the first period, the

government issues bonds to finance spending. Households receive an endowment, which they

either consume or deposit in financial institutions—such as banks—that we refer to as investors.

These investors observe noisy signals and allocate funds between government bonds and central

bank reserves. The central bank, in turn, issues reserves to investors for the purpose of purchasing

bonds or saving through storage. In the second period, the government levies lump-sum taxes

to finance spending, debt service, and make transfers to the central bank; investors remunerate

deposits and transfer their trading gains to households; households liquidate deposits, consume,

and pay taxes. The analysis that follows applies to both quantity- and price-targeting asset

purchase policies by the central bank. We now consider the problem of each class of agents in

detail.

Households. Households are homogenous and enjoy utility from consumption in two periods.

In the first period, household j solves the following consumption-saving problem:

max
cj,0,cj,1,{sj,i}i∈[0,1]

u(cj,0) + u(cj,1)

s.t. cj,0 = y −
∫ 1

0

sj,i di and cj,1 =

∫ 1

0

Risj,i di+D − τ.

(30)

where y is the initial endowment of the consumption good;32 sj,i is the amount of savings that

household j deposits with investor i and which earn the fixed rate Ri; D are dividends paid

out by investors; τ is the amount of lump-sum taxes paid by the household to the government.

Deposit contracts are signed before any shock realizes, and allow households to get any quantity

of savings remunerated at a fixed rate.33 Since investors are ex-ante identical and perfectly

compete for savings, they all set the same interest rate R in equilibrium, such that they make

zero profits in expectation. It follows that sj,i = s, since households are identical and indifferent

with respect to which investor they save with. Finally, we assume that households hold an equal

ownership share of each investor, so the dividends they receive are independent of their saving

choice, and are thus taken as given. Note that dividends are generally non-zero because investors

32We assume that the endowment is sufficiently large to allow liquidity to the financial sector in any state of
the world.

33Here we implicitly impose a restriction on contracts that, beyond improving tractability, also captures realistic
features of the banking system.

33



as a whole always make gains or losses ex post.

Government and central bank. The government issues an amount of debt whose face value is

stochastic and given by S̃, according to equation (1). The total amount of government spending

in the two periods must sum up to G units of the consumption good, so the fraction that

is consumed in t = 0 depends on the revenues from debt issuance according to the budget

constraint g0 = S̃Q, and the remaining fraction g1 = G− g0 relies on tax revenues net of central

bank transfers and debt service, according to g1 = τ − S̃θ − τcb.

In the first period, the central bank issues reserves to purchase bonds or save in a safe storage

technology kcb, so its budget constraint is given by acb = Qbcb + kcb. Reserves are assumed to

offer a zero net interest rate. In the second period, the central bank uses the proceeds from APs,

storage, and government transfers to reimburse reserves, and its budget constraint is given by

θbcb + kcb + τcb = acb.

The second-period budget constraints of the government and the central bank can be respec-

tively written as

τ = τcb +G+ πgov, (31)

and

−τcb = πcb, (32)

where πgov := S̃(θ−Q) and πcb := bcb(θ−Q), matching the payoff functions we use in Section 4.2.

Joining these two conditions, we get the second-period budget constraint of the consolidated

public sector

τ −G = (S̃ − bcb)(θ −Q), (33)

which states that public sector surplus must equal the net losses from bond issuance. In the

absence of information frictions, Q = θ, the government runs a balanced budget, and debt is

only needed because of a mismatch between the timing of taxes and government spending.

Investors. Before observing any information, investors receive funds si =
∫
sj,idj from house-

holds. After learning their private signal, each investor i allocates their funds between central

bank reserves ai and government debt bi, according to si = ai + Qbi, taking bond price Q and

return on savings R as given.Their objective is to maximize expected dividends conditional on
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their information set

max
bi∈[0,1], di

E[di |Ωi]

s.t. di = bi(θ −Q)− si(R− 1)
(34)

where bond position bounds and the information set Ωi are as in Section 2.1, so that investors’

bond demand follows (8).

Market clearing. The market clearing condition for bonds is as in (7); that for central bank

reserves is
∫ 1

0
ai di = acb; that for households’ savings is

∫ 1

0
sj,idj = si; and those for goods in the

two periods are c0 + g0 + kcb = y and c1 + g1 = kcb, respectively. The equilibrium remuneration

of households’ savings is given by their ex-ante zero-profit condition

R = 1 +
1

s
E [πinv] , (35)

where E [πinv] denotes investors’ average gains in the bond market, and is the same object we

characterized in Proposition 4.34 Finally, dividends D =
∫
di di are such that ex-post gains are

rebated to—and losses recapitalized by—households, ensuring that all investors can remunerate

their deposit obligations. Note that, due to (33), the exogenous component of households’ second-

period consumption (that is, D− τ) is deterministic, since gains and losses by investors and the

public sector offset each other.

Competitive equilibrium. A competitive equilibrium in this extended model consists of two

blocks. First, consumption and loan allocations for households and investors, government tax and

spending policies, central bank transfer policies, and an interest rate R such that: the allocations

solve the household problem (30) and the ex ante investor problem; government and central bank

policies satisfy the budget constraints (31) and (32); the interest rate satisfies equations (35);

and the markets for goods, loans, and reserves clear. Second, a generic AP policy, a bond price

function Q, and investors’ portfolio allocations and posterior beliefs that form a Perfect Bayesian

Equilibrium of the financial market according to Definition 3.

34That is, average investor profits obtain by integrating (21) with respect to the market signal distribution Mb.
The analytical derivation can be found in Appendix A.4.
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Efficiency. The Euler equation for the representative household is given by

u′(c0) = Ru′(c1) (36)

which equates the marginal cost and expected return on saving R, taking as given dividends

D and lump-sum taxes τ . Imposing symmetry and plugging in market clearing conditions and

budget constraints, equation (36) becomes

u′(y − s) = Ru′(s−G). (37)

In contrast, the planner problem is given by maxs u(y − s) + u(s−G), which yields the first

best condition

u′(y − s) = u′(s−G). (38)

The key observation here is that the planner ignores the return on savings offered by investors

because—in contrast to households—it internalizes the effect of aggregate savings on taxes and

investors’ gains. The following proposition states our main result on the welfare effects of APs.

Proposition 7. Household welfare is increasing in the central bank quantity-target bcb or price-

target Qn insofar as

R > 1 ⇔ E [πinv] > 0. (39)

Proof. The equivalence in condition (39) follows from (35). Comparing equation (38) with (37),

one can see that the competitive equilibrium is not efficient when average investor gains are

positive. Propositions 4 and 6 then prove that such gains are decreasing in the AP quantity- or

price-target, respectively. ■

The key takeaway from the proposition is that the very same assumptions—limited arbitrage and

dispersed information—that make APs non-neutral in our model also provide a microfoundation

for the rationale behind central bank interventions, without resorting to additional frictions such

as price rigidities or inequality motives. In particular, policy has a role because households fail to

internalize that investor gains in the financial market lead to higher taxes, thus saving too much

relative to the social optimum. Proposition 7 states that APs reduce these expected returns in

the financial market and thus increase welfare.

In this setting, the optimal asset purchase policy would be the one inducing the largest

possible reduction in returns on savings, since the central bank bears no cost from conducting

APs or transferring resources directly to the treasury. Introducing inflation and limits to the
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transfer policy between central bank and treasury would be one way of thinking about the

potential inflationary costs of central bank APs and balance sheet expansion. We leave this as

an interesting direction for future research.

6 Heterogeneous Term Premia: a Simple Comparison

This section compares our mechanism to more traditional models, where the elasticity of aggre-

gate asset demand depends on the distribution of required premia across the investor population.

To explore this, we consider a modification of our model where investors demand have heteroge-

neous preferences for risk. Our findings reveal a stark contrast in predictions: this different form

of heterogeneity implies that asset prices increase monotonically with the size of APs, while the

expected impact on the central bank’s balance sheet is strictly positive.

Let us first show how our framework extends to include heterogeneity in term premia. As

before, bonds pay according to the lottery specified in (2), and each investor i is risk neutral,

can buy up to one unit of the asset, and has an expected payoff given by E[θ̃ |Q, xi]. We assume

that investor i discounts the payoff at a discount rate given by an idiosyncratic premium λi, and

thus buys bonds if E[θ̃ |Q, xi]
1+λi

> Q.35 That is, investor i buys bonds if her subjective premium is

smaller than the equilibrium one. The case investigated in the main text obtains in the case of a

homogeneous term premium (λi = λ) through a simple rescaling of θ̃. Here we explore the case

of homogeneous expectations (E[θ̃ |Q, xi] = E[θ̃] for all i) and heterogeneous term premia.

The distribution of required premia across investors is assumed to be exogenous, with a

cumulative distribution function F̃ on the support
[
λ, λ

]
. We denote by F the c.d.f. of reservation

prices E[θ̃]/(1 + λ) that is induced by F̃ . The marginal agent m is the one whose reservation

price is equal to the equilibrium one, so we write her subjective premium as a function of the

equilibrium price: λm(Q) = E[θ̃]/Q− 1.

The bond market is assumed to work as in the previous sections: the supply of bonds is

given by S̃ and distributed as in (1), and the central bank implements APs according to the

quantity-targeting rule (5).36 Market clearing in the bond market requires

1− F (Q) = max{ S̃ − b, 0}
35This can be easily extended to also include a common component r (e.g., the short-term risk-free rate).
36We consider quantity-targeting APs for simplicity, but our results here would also go through with price-

targeting policies.
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where aggregate demand 1−F (Q) = F̃ (λm(Q)) denotes the mass of investors with a reservation

price larger than Q, or equivalently a subjective premium smaller than λm(Q). The equilibrium

price is given by

Q(S̃, b) =





F−1(1− S̃ + b) if S̃ ≥ b

Qpas if S̃ < b
(40)

where we set Qpas = E[θ̃] to rule out direct transfers between the central bank and government, as

we do in our baseline model. Equation (40) shows that the equilibrium bond price is independent

of the realization of θ̃. It follows that the equilibrium value of the marginal agent’s subjective

premium is given by λm(Q) = F̃−1(S̃ − b).

Assuming that subjective premia are uniformly distributed, we obtain simple results stated

in the following proposition, including an equilibrium price—or yield—expression conceptually

close to that typically assumed in the finance literature.

Proposition 8 (APs with structural heterogeneity). Let F̃ = Uniform[λ, λ]. Approximating to

a first order, bond demand is given by

F̃ (λm(Q)) =
λm(Q)− λ

λ− λ
≈ β − α log(Q) (41)

where α := 1/(λ− λ) and β := α
[
log

(
E[θ̃]

)
− λ

]
. The equilibrium yield premium is given by

λm(S̃, b) = λ+ (S̃ − b)(λ− λ).

A quantity-targeting intervention of size b leads to a drop in the average equilibrium yield

Eb[λm]− E0[λm] = −b
λ− λ

2
,

and to central bank average gains

E[πcb] =
b

1− b
E[θ̃]

∫ 1

b

λm(S̃, b)

1 + λm(S̃, b)
dS̃ > 0.

Proof. Postponed to Appendix A.7. ■

The proposition characterizes a simple example where aggregate asset demand is downward-

sloping and microfounded by heterogeneity in risk premia. This is useful to highlight some key
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differences with our model of belief heterogeneity. First, the effect of APs on yields is strictly

positive and is a monotonic function of the intervention size. Second, the effect on the central

bank balance sheet is strictly positive. These conclusions go beyond the specific functional form

explored in this example. APs have monotonic effects because they do not affect the fundamental

characteristics of investors, so their only effect is to crowd out those less willing to enter the

market. Since investors require positive risk premia, the central bank always intervenes at a

price that is below the fundamental value of the asset, generating positive average gains. These

results imply that APs have no downsides, and any reason to tame their size, if any, is external

to their functioning. In our model, in contrast, investors respond to central bank intervention by

adjusting their beliefs. This has two important implications: first, APs can backfire and depress

asset prices by making them more informative in low payoff states; second, central banks may

incur losses if they purchase assets when they are overpriced by the market.

7 Conclusion

This paper studies central bank purchases of government debt when investors hold heterogeneous

beliefs and learn from prices. Learning from prices introduces an externality that creates a wedge

between bond prices and fundamentals. We show that the effect of APs crucially depends on

how they interact with the magnitude and sign of this wedge. First, APs have a non-monotonic

effect on bond prices which depends on the intervention size: they raise prices by crowding out

pessimistic investors, but lower them by making prices more informative in states where bond

payoffs are low. Second, APs generate implicit transfers from the central bank to the government,

because the central bank tends to purchase bonds when they are overpriced relative to their

fundamental value. Our findings contrast sharply with settings where investor heterogeneity is

structural and thus invariant to policy.
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Cúrdia, Vasco and Michael Woodford, “The central-bank balance sheet as an instrument

of monetarypolicy,” Journal of Monetary Economics, January 2011, 58 (1), 54–79.
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Appendix

A Proofs

A.1 Proof of Proposition 1 (Single crossing)

For notational convenience, let

γ :=
θH − θL

σ2
x

; q̃ :=
1− q

q
. (42)

Using equation (12) for p̂(xm) and (13) and (14) for p(xm), we can rewrite posterior beliefs as

p(xm) =
1

1 + q̃ exp{2γ(x† − xm)}
p̂(xm) =

1

1 + q̃ exp{γ(x† − xm)}
.

(43)

It is straightforward to show that p(xm) ≥ p̂(xm) if and only if xm ≥ x†.

A.2 Proof of Proposition 2 (Average price and valuation)

A.2.1 Derivation of Equations (17)-(19)

First, we derive (17). The average fundamental valuation is

E[Q (p̂(xm))] =

∫ +∞

x(b)

Q(p̂(xm))
fMb

(xm)

1− b
dxm

= θL +
(θH − θL)

1− b

∫ +∞

x(b)

p̂(xm))fMb
(xm)dxm

= θL +
(θH − θL)

1− b

∫ +∞

x(b)

qϕ
(

θH−xm

σx

)

∑
j∈{L,H} qjϕ

(
θj−xm

σx

) 1

σx

∑

j∈{L,H}
qjϕ

(
θj − xm

σx

)
dxm

= θL + q
(θH − θL)

1− b

∫ +∞

x(b)

ϕ

(
θH − xm

σx

)
1

σx

dxm

= θL + q(θH − θL) = E[θ]

where in the summations we use qL = 1− q, qH = q.
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Second, we derive (18) and (19). We write the average price as a function of the average

fundamental valuation

E[Q (p(xm))] = E[Q (p̂(xm))] + E[Q (p(xm))]− E[Q (p̂(xm))] =

= E[θ] +
(θH − θL)

1− b

∫ +∞

x(b)

(p(xm)− p̂(xm)) fMb
(xm)dxm

= E[θ] + ∆(b).

A.2.2 Average Wedge Without APs

We now turn to prove that

∆(0) =

∫ +∞

−∞
(p(xm)− p̂(xm)) fM0 (xm) dxm ≥ 0 (44)

if and only if q ≤ 1/2, and holds with equality at q = 1/2. We start by rearranging the expression

as follows

∫ +∞

−∞
(p(xm)− p̂(xm)) fM0 (xm) dxm ≥ 0

∫ +∞

x†
(p(xm)− p̂(xm)) fM0 (xm) dxm ≥

∫ x†

−∞
(p̂(xm)− p(xm)) fM0 (xm) dxm

∫ +∞

0

(
p(x† + h)− p̂(x† + h)

)
fM0

(
x† + h

)
dh ≥

∫ 0

−∞

(
p̂(x† + h)− p(x† + h)

)
fM0

(
x† + h

)
dh

∫ +∞

0

(
p(x† + h)− p̂(x† + h)

)
fM0

(
x† + h

)
dh ≥

∫ +∞

0

(
p̂(x† − h)− p(x† − h)

)
fM0

(
x† − h

)
dh.

First, we show that fM0

(
x† + h

)
≥ fM0

(
x† − h

)
for all h ∈ (0,+∞) if and only if q ≥ 1/2

fM(x† + h) ≥ fM(x† − h)

q ϕ

(
x† − h

σx

)
+ (1− q)ϕ

(−x† − h

σx

)
≥ q ϕ

(
x† + h

σx

)
+ (1− q)ϕ

(−x† + h

σx

)

q ϕ

(
x† − h

σx

)
+ (1− q)ϕ

(
x† + h

σx

)
≥ q ϕ

(
x† + h

σx

)
+ (1− q)ϕ

(
x† − h

σx

)

(1− 2q)

[
ϕ

(
x† + h

σx

)
− ϕ

(
x† − h

σx

)]
≥ 0,

since the term inside square brackets in the last inequality is strictly negative for all h > 0. At

47



q = 1/2, the above condition holds with equality because p(x†+h)−p̂(x†+h) = p̂(x†−h)−p(x†−h)

and fM0

(
x† + h

)
= fM0

(
x† − h

)
for all h ∈ (0,+∞).

Second, we show that

p(x† + h)− p̂(x† + h) ≥ p̂(x† − h)− p(x† − h)

if and only if q ≥ 1/2. We use (43), rescaling h = h/γ to simplify the algebra, to rewrite the

condition as

1

1 + q̃e−2h
− 1

1 + q̃e−h
≥ 1

1 + q̃eh
− 1

1 + q̃e2h

q̃(e−h − e−2h)

1 + q̃(e−2h + e−h) + q̃2e−3h
≥ q̃(e2h − eh)

1 + q̃(e2h + eh) + q̃2e3h

(e−h − e−2h) + q̃(eh + 1− 1− e−h) + q̃2(e2h − eh) ≥ (e2h − eh) + q̃(1 + eh − e−h − 1) + q̃2(e−h − e−2h)

(1− q̃2)(e−h + eh − e−2h − e2h) ≥ 0.

Since the second parenthesis is negative for any h > 0, the above condition is satisfied for q ≤ 1/2,

and holds with equality at q = 1/2. This concludes the proof of (44).

A.2.3 Properties of the Average Wedge

To rewrite the average wedge in a more convenient way, we perform the following change of

variable

xm = θH + σxΦ
−1(y),

which we previously defined as x(y). This implies that dxm = σx
1

ϕ
(

xm−θH
σx

)dy, so the expression

for the average price becomes

Qqt(b) = E[θ] + q(θH − θL)

(
1

1− b

∫ 1

b

p(x(y))

p̂(x(y))
dy − 1

)

and we define the following convenient linear transformation of the average wedge

∆̃(b) :=
∆(b)

q(θH − θL)
+ 1 =

1

1− b

∫ 1

b

δ(x(y))dy,

where δ(x) := p(x)
p̂(x)

denotes the conditional wedge ratio function. We now derive some properties

of the function δ(·), which will be useful to prove the properties of the average wedge ∆(·) that
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are stated in the Proposition.

Lemma 1. The conditional wedge ratio δ(xm) :=
p(xm)
p̂(xm)

(i) is single-peaked, has maximizer x∗ := x† + σ2
x

θH−θL
log

(
1+

√
q√

q

)
, and maximum δ(x∗) which

depends solely on parameter q.

(ii) is increasing (decreasing) in xm to the left (right) of x∗, and is such that limx→−∞ δ(x) = 0

and limx→+∞ δ(x) = 1.

Proof. The derivative of the wedge is given by

δ′(x) =
γ q̃ eγ(x

†−x)

(
1 + q̃ e2γ(x†−x)

)2
[
q̃ e2γ(x

†−x) + 2 eγ(x
†−x) − 1

]

where γ, q̃ are defined in (42). It follows that δ′(x) ≥ 0 if and only if x ≤ x∗ := x† +

1
γ
log

(
q̃√

1+q̃−1

)
= x† + 1

γ
log

(
1+

√
q√

q

)
. Since log

(
1+

√
q√

q

)
> 0, x∗ is larger than x† and is in-

creasing in σx (i.e., decreasing in γ). It follows that δ′(x∗) = 0, δ′(x) > 0 for x < x∗, and

δ′(x) < 0 otherwise. Moreover, the maximum δ(x∗) =
2(1+

√
q)+q

1+
√
q+q

is such that δ(x∗) > δ(x†) = 1,

it is only a function of the prior distribution parameter q, and it is decreasing in it. The two

statements for limxm→±∞ δ(xm) can be proved using L’Hôpital’s rule.

This completes the proof that the wedge function δ(x) is single-peaked, is increasing in x if

and only if x < x∗, is smaller than one if and only if x < x†, its maximum is only a function of

q, and its maximizer is increasing in σx. ■

We now return to the proof of the proposition, where we will use the results of the lemma. To

help the reader with a visual representation, Figure 8 plots the average and conditional wedge

functions on the left and right panel, respectively.

Limit of ∆(b) for b → 1. Using L’Hôpital’s rule, we get

lim
b→1

∆̃(b) =
limb→1−δ(x(b))

−1
= 1,

since limb→1 δ(x(b)) = limx→+∞ δ(x) = 1 as per Lemma 1. It follows that limb→1∆(b) = 0.
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Figure 8: The average wedge (left panel) and the conditional wedge ratio (right panel) as a function of
APs b.

Single-peakedness of ∆(b). The derivative of the (transformed) average wedge with respect

to APs is given by

∆̃′(b) =
1

1− b

(
∆̃(b)− δ(x(b))

)
. (45)

To show that it is an inverse U-shaped function of APs, we again use the properties of δ(x)

described in Lemma 1. For convenience, let b(x) denote the AP quantity that delivers a non-

revealing region with lower bound x, that is

b(x) = {b : x(b) = x} = Φ

(
x− θH
σx

)
(46)

First, ∆̃′(b) > 0 for all b ∈ [0, b(x†)], because δ(x(b)) is the lowest value the wedge ratio δ

can take in the interval [x(b),+∞], so ∆̃(b) > δ(x(b)). This also implies that ∆̃(b) > δ(x(b)) in

this range of AP quantities, and specifically ∆̃(b(x†)) > 1.

Second, ∆̃′(b) < 0 for all b ∈ [b(x∗), 1], because δ(x(b)) is the largest value the wedge ratio

can take in the interval [x(b),+∞], so ∆̃(b) > δ(x(b)).

Third, we prove that ∆̃(b) has a unique stationary point b∗ such that ∆̃′(b∗) = 0, and

b∗ ∈ [b(x†), b(x∗)]. To do so, we compute the second derivative

∆̃′′(b) =
1

(1− b)
[2∆̃′(b)− δ′(x(b))x′(b)].
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Since x′(b) > 0 for all b, and δ′(x) > 0 for x < x∗, it follows that ∆̃′′(b) < 0 when ∆̃′(b) = 0,

so there can only be one value of b where that is the case, because there are no locally convex

stationary points.

Fourth, since ∆(b) is single-peaked and converges to 0 from above, it must be that it is

positive for all b ≥ b̃(q), where b̃(q) = 0 for all q ≤ 1/2, and b̃(q) ∈ (0, b(x†)) otherwise.

This concludes the proof that ∆(b) is a single-peaked function of the AP size b, it is positive

for b large enough, ∆(0) ≥ 0 if and only if q ≤ 1/2, and limb→1∆(b) = 0.

A.3 Proof of Proposition 3 (Conditional gains and losses)

Note that the proposition focuses on the non-revealing region xm ∈ [x(b),+∞), because otherwise

the fundamental is fully revealed, Q(p(xm)) = θ, and gains and losses are zero.

Investors. Since E[θ−Q(p(xm)) |xi, xm] ≥ 0 if and only if xi ≥ xm, investor gains conditional

on xm are positive (E[πinv |xm] > 0) for any xm in the non-revealing region.

Central bank. From (22) it is straightforward to see that central bank conditional gains are

negative if and only if the fundamental valuation is smaller than the equilibrium price, and bonds

are overpriced by the market. By Proposition 1, this is true for all xm > x†.

Government. Government gains can be rewritten as

E[πgov |xm] =
∑

θ∈{θH ,θL}
Φ

(
θ − xm

σx

)(
Q(p(xm))− θ

)
P (θ |xm ∼ Mb)+

+
∑

θ∈{θH ,θL}
b
(
Q(p(xm))− θ

)
P (θ |xm ∼ Mb).

The first line represents losses on the bonds sold to investors, and is strictly negative for all

(xm, b) because it is the flip side of investors’ gains. The second line represents gains or losses on

the bonds sold to the central bank, and is strictly positive whenever b > 0 and xm > x†, since

it is the flip side of the central bank losses: when bonds are overpriced, the seller gains and the

buyer loses.

We now characterize the states where the government makes net gains or losses. Let B(θ, xm) :=

Φ
(

θ−xm

σx

)
denote the mass of investors who are buying bonds. We derive the following condition,
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with each step explained below:

E[πgov |xm] ≥ 0

b(θH − θL)(p(xm)− p̂(xm)) ≥ (θH − θL)
(
B(θH , xm)p̂(xm)(1− p(xm))− B(θL, xm)p(xm)(1− p̂(xm))

)

b
(
δ(xm)− 1

)
≥ B(θH , xm)(1− p(xm))− B(θL, xm)δ(xm)(1− p̂(xm))

b
(
e−γ(xm−x†) − e−2γ(xm−x†)

)
≥ B(θH , xm)e

−2γ(xm−x†)

(
1− B(θL, xm)

B(θH , xm)
eγ(xm−x†)

)

b
(
eγ(xm−x†) − 1

)
≥ B(θH , xm)

(
1− B(θL, xm)

B(θH , xm)
eγ(xm)

)
.

The second step follows from the definitions of Q(p(xm)) in (15) and of p̂(xm) in (12), the third

and fourth from the definition of δ(xm) in Lemma 1 and the notation defined in (42), and the

last from simple algebra. Finally, we get

eγ(xm−x†) ≥ b + B(θH , xm)

b + B(θL, xm)
. (47)

We define xg as the value for which (47) holds with equality, and prove that the inequality is

strict for all xm > xg by showing that the right-hand side of the condition is decreasing in xm

whenever xm > xg.

∂

∂x

b + B(θH , x)
b + B(θL, x)

< 0

ϕ

(
θL − x

σx

)
[b + B(θH , x)] < ϕ

(
θH − x

σx

)
[b + B(θL, x)]

e
γ
2
(x−x†) <

b + B(θH , x)
b + B(x) ≤ eγ(x−x†)

where the last inequality follows from (47).

A.4 Proof of Proposition 4 (Average gains and losses)

Average (or unconditional) gains for j ∈ {inv, cb, gov} are given by

E[πj] = bE[πj | S̃ < b] + (1− b)E[πj | S̃ ≥ b] =

∫ ∞

x(b)

E[πj |xm]fMb
(xm) dxm, (48)
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where we use the fact that E[πj | S̃ < b] = 0 for government and central bank because of the

assumption that Qpas = θ, and for investors because they do not participate in the bond market.

The set of states where S̃ ≥ b corresponds to xm ∈ [x(b),+∞). The integration interval in

the last equation is the non-revealing region [x(b),+∞), because gains and losses in the fully

revealing region [x(b), x(b)) are zero for all players. From (48) it is straightforward to see that

average gains converge to zero as b → 1.

Investors. Proposition 3 shows that E[πinv |xm] > 0 for all xm ∈ [x(b),+∞), which implies

that investors’ average gains are strictly positive. To show they are decreasing in b, we take the

derivative
∂E[πinv]

∂b
= −x′(b)E[πinv |x(b)] fMb

(x(b)) < 0

since x′(b) = σx/ϕ (Φ
−1(b))) and E[πinv |xm] > 0 for any xm ∈ [x(b),+∞).

Central bank. Applying (48) to the central bank, and combining it with (22) and Proposi-

tion 2, we get that central bank average gains are given by

E[πcb] = −b(1− b)∆(b).

We can thus use the properties of the average wedge stated in Proposition 2 and derived in

Appendix A.2. Specifically, following directly from the properties of the average wedge, central

bank gains are negative for b ≥ b̃(q), where b̃(q) = 0 for all q ≤ 1/2, and b̃(q) ∈ (0, b(x†))

otherwise.

Government. Proposition 3 states that government gains conditional on xm are positive for

all xm > xg(b). It follows that a sufficient condition for average government gains to be positive

is that they are positive at all market signals xm in the non-revealing region, which happens for

all b such that [x(b),+∞) ⊆ [xg(b),+∞).

A.5 Proof of Proposition 5 (Price-targeting APs)

For convenience and to lighten the notation, define

B̃i := Φ

(
θi − x̃n

σx

)
and Bi := Φ

(
θi − xn

σx

)
(49)
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as the mass of investors buying bonds when the fundamental is θi for i ∈ {H,L} and the marginal

agent’s signal is x̃n as defined in the paragraph of equation (23). We consider states where the

central bank intervenes, which requires

xm ∈ (−∞, x̃n] ⇔ S̃ ∈ [B̃i, 1].

For now, suppose that the AP policy must deliver a marginal agent’s signal equal to some value

xn to achieve the price target, which results in the central bank purchasing a quantity bn(θ, S̃) as

defined in (25). It follows that bn | θ is uniformly distributed over the interval [bn(θ, B̃i), bn(θ, 1)].

If investors were to observe an AP quantity that is only compatible with one value of the

fundamental, then APs would be fully revealing. This implies that the interval of non-revealing

purchases must be the intersection of the supports of bn | θH and bn | θL. This coincides with

the support of θH . The fact that bn(θH , 1) < bn(θL, 1) is straightforward to show. To see why

bn(θH , B̃H) > bn(θL, B̃L), we plug in the definitions of x̃n and xn, and after a bit of algebra we get

to the expression
∫ Ln

Ln/
√
2
ϕ(A+y)dy <

∫ Ln

Ln/
√
2
ϕ(A−y)dy, where Ln := σx

θH−θL
log

(
1−q
q

Qn−θL
θH−Qn

)
> 0

and A := θH−θL
2σx

> 0, which is satisfied for all Qn because ϕ(A+ y) < ϕ(A− y) for any y, due to

the symmetry of the standard normal density.

We have thus shown that the price-targeting, non-revealing AP policy bn | θ ∼ Uniform[bn, bn].

Crucially, this distribution is independent of θ, so it is also the marginal distribution of bn, whose

c.d.f. and p.d.f. are given by

P (bn < y |Qn) =
y − bn
bn − bn

and P (bn = y |Qn) =
1

bn − bn
for all y ∈ [bn, bn].

We now have all the elements to show that, when bcb ∈ [bn, bn], observing (Q = Qn, bcb) does

not convey any new information. Using Bayes’ law

P (θH |Qn, bcb) =
P (Qn, bcb | θH)P (θH)∑

j∈{H,L} P (Qn, bcb | θj)P (θj)
=

P (θH)∑
j∈{H,L} P (θj)

= q

where P (θH) = q, P (θL) = 1 − q, and the second equality uses the fact we derived above that

the distribution of APs is independent of the fundamental.

As a result, the expected bond payoff for investor i conditional on observing (Q = Qn, bcb) is

given by

E[θ |xi ∼ N , Qn, bn > 0 ] = E[θ |xi ∼ N ],
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so that Qn = E[θ |xn ∼ N ] pins down the price (or marginal agent’s) signal xn = x(Qn, σx) that

needs to obtain for the price to equal the target when the central bank is intervening in the bond

market.

A.6 Proof of Prop. 6 (Average properties of price-targeting APs)

A.6.1 Proof of statement (i)

We continue to use the notation introduced in (49) for brevity. The average size of APs is

E[bcb] = P (Qn)E[bcb |Qn] = (1− B̃H)
1

2

[
1− 2BH + B̃H

]

where

E[bcb |Qn] =
bn + bn

2
=

1

2

[
1− 2BH + B̃H

]

P (Qn) = 1− B̃H .

To show that the average size is increasing in Qn, let B̃
′
H := ∂B̃H

∂x̃n

∂x̃n

∂Qn
and B′

H := ∂BH

∂xn

∂xn

∂Qn
denote

derivatives with respect to the price target, both of which can be shown to be negative. We have

∂E[bcb]
∂Qn

=
1

2

[
−B̃′

H(1− 2BH + B̃H) + (1− B̃H)(−2B′
H + B̃′

H)
]

= −B′
H(1− B̃H)− B̃′

H(B̃H −BH).

which is positive since B̃H > BH when Qn > E[θ].

A.6.2 Proof of statement (ii)

Since average APs are positive, the sign of central bank gains follows directly from the sign of

E[θ]−Qn, and is thus either zero or negative when Qn > E[θ]. Deriving with respect to Qn we

get
∂E[πcb]

∂Qn

=
∂E[bcb]
∂Qn

(E[θ]−Qn)− E[bcb]

which is strictly negative, since average APs are increasing in Qn as per statement (i).
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A.6.3 Proof of statement (iii)

This requires taking the derivative of equation (28) with respect to the price target Qn. Before

doing so, we rewrite (28) replacing P (Q = Qn) with Φ
(

x̃n−θH
σx

)
and P (θj |x ∼ M0) fM0(x) with

1
σx
ϕ
(

θj−x

σx

)
qj, where j ∈ {H,L} and qH = q, qL = 1− q. Finally, since xn and Qn are one-to-one

and x̃n = (xn + x†)/2, we can take derivatives with respect to xn rather than Qn, since we are
only concerned with the sign of derivatives. We compute

∂

∂xn



∫ ∞

x̃n

∑

j

Φ

(
θj − x

σx

)(
θj −Q(p(x))

) 1

σx
ϕ

(
θj − x

σx

)
qj dx+Φ

(
x̃n − θH

σx

)∑

j

Φ

(
θj − xn

σx

)(
θj −Qn

)
qj




which yields the following derivative (that we explain below)

=− 1

2

∑

j

Φ

(
θj − x̃n

σx

)(
θj −Qn

) 1

σx

ϕ

(
θj − x̃n

σx

)
qj+

+
1

2

1

σx

ϕ

(
θH − x̃n

σx

)∑

j

Φ

(
θj − xn

σx

)(
θj −Qn

)
qj+

− Φ

(
x̃n − θH

σx

)∑

j

1

σx

ϕ

(
θj − xn

σx

)(
θj −Qn

)
qj

− Φ

(
x̃n − θH

σx

)∑

j

Φ

(
θj − xn

σx

)
∂Qn

∂xn

qj.

(50)

In words, a higher price target has the following effects, each corresponding to one line of the

derivative in (50): first, it shrinks the set of states in which there are no interventions (first line);

second, it expands the set of states in which there are interventions and Q = Qn (second line);

third, it lowers the amount of bonds absorbed by investors in such states (third line); fourth, it

increases the price and shrinks the gains margin θ −Q in such states (fourth line).

To show that this derivative is negative for all Qn ≥ E[θ], we proceed as follows. The fourth

line is strictly negative since ∂Qn

∂xn
> 0. The third line is equal to zero: to see that, we first

rearrange the statement as

ϕ
(

θL−xn

σx

)

ϕ
(

θH−xn

σx

) 1− q

q

Qn − θL
θH −Qn

= 1,
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and then define T := 1−q
q

Qn−θL
θH−Qn

and note that

ϕ
(

θL−xn

σx

)

ϕ
(

θH−xn

σx

) = exp

{
(x† − xn)(θH − θL)

σ2
x

}
= T−1, (51)

according to (23), which verifies that the third line of (50) is indeed zero.

To complete the proof, it is thus sufficient to compare the first two lines of the derivative

in (50). Collecting some terms, simplifying, and opening up the summation over θ we get

q(θH −Qn)ϕ

(
θH − x̃n

σx

)[
Φ

(
θH − x̃n

σx

)
− Φ

(
θH − xn

σx

)]
≥

≥ (1− q)(Qn − θL)

[
ϕ

(
θL − x̃n

σx

)
Φ

(
θL − x̃n

σx

)
− ϕ

(
θH − x̃n

σx

)
Φ

(
θL − xn

σx

)]
.

Dividing through by q(θH −Qn)ϕ
(

θH−x̃n

σx

)
we get

[
Φ

(
θH − x̃n

σx

)
− Φ

(
θH − xn

σx

)]
≥ T



ϕ
(

θL−x̃n

σx

)

ϕ
(

θH−x̃n

σx

)Φ
(
θL − x̃n

σx

)
− Φ

(
θL − xn

σx

)


where T is defined in the previous paragraph, and we know T ≥ 1 when Qn ≥ E[θ]. Derivations
similar to (51) yield

ϕ
(

θL−x̃n

σx

)

ϕ
(

θH−x̃n

σx

) = e
(x†−x̃n)(θH−θL)

2σ2
x = T−1/2.

We thus have

[
Φ

(
θH − x̃n

σx

)
− Φ

(
θH − xn

σx

)]
≥

√
T Φ

(
θL − x̃n

σx

)
− T Φ

(
θL − xn

σx

)
. (52)

Given that with Qn > E[θ] we have T > 1, a sufficient condition for (52) to hold is

[
Φ

(
θH − x̃n

σx

)
− Φ

(
θH − xn

σx

)]
≥

√
T

(
Φ

(
θL − x̃n

σx

)
− Φ

(
θL − xn

σx

))
. (53)

The proof of this is tedious and proceeds as follows. To lighten the notation, let ∆ := θH−θL
2σx

and

t := 1
2

σx

θH−θL
log(T ) = x̃n−x†

σx
= xn−x†

2σx
, where we note ∆ > 0 and t > 0, and recall x† = θH+θL

2
.
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The sufficient condition (53) can be rewritten as

Φ (∆− t)− Φ (∆− 2t) ≥ e2∆t [Φ (−∆− t)− Φ (−∆− 2t)]
∫ ∆−t

∆−2t

ϕ(x)dx ≥ e2∆t

∫ ∆+2t

∆+t

ϕ(x)dx

t

∫ 2

1

ϕ(∆− ty)dy ≥ e2∆t t

∫ 2

1

ϕ(∆ + ty)dy

∫ 2

1

e−
1
2
(∆−ty)2dy ≥

∫ 2

1

e−
1
2
(∆+ty)2e2∆tdy

∫ 2

1

e−
1
2
(∆+ty)2e2∆tydy ≥

∫ 2

1

e−
1
2
(∆+ty)2e2∆tdy

∫ 2

1

e−
1
2
(∆+ty)2

(
e2∆ty − e2∆t

)
dy ≥ 0

which concludes the proof since 2∆ty > 2∆t for y ∈ [1, 2].

A.6.4 Proof of statement (iv)

This follows from the fact that government gains are the sum of central bank losses and investors’

gains. Since the former are increasing in the price target, and the latter are decreasing in it and

eventually converge to zero, there exists a price target Qn ∈ (E[θ], θH) such that government

gains are positive if the target is at least as high.

A.6.5 Proof of statement (v)

We compute the average price in three different regions of the state space.

First, with probability P (Q > Qn) = qΦ
(

θH−x̃n

σx

)
+ (1 − q)Φ

(
θL−x̃n

σx

)
, the price signal is

above x̃n, there are no APs and Q > Qn, and the average price can be written as:

∫∞
x̃n

Q (p(xm)) dxm

P (Q > Qn)
.
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With some algebra, the numerator of this expression can be rewritten as

∫ ∞

x̃n

Q (p(xm)) dxm =

∫ ∞

x̃n

Q (p̂(xm)) dxm +

∫ ∞

x̃n

(Q (p(xm))−Q (p̂(xm))) dxm =

= P (Q > Qn) θL + (θH − θL)

[∫ ∞

x̃n

p̂(xm)fMb
(xm)dxm +

∫ ∞

x̃n

(p(xm)− p̂(xm)) fMb
(xm)dxm

]

= P (Q > Qn)θL + (θH − θL)Φ

(
θH − x̃n

σx

)[
q +∆(b̃n)

]

where the last step uses (19) to rewrite the third term of the summation as ∆(b̃n)(1− b̃n) with

b̃n = Φ((x̃n − θH)/σx).

Second, with probability P (Q = Qn) = 1 − Φ
(

θH−x̃n

σx

)
there are APs and Q = Qn; the

average price in this case is Qn.

Third, with the remaining probability P (Q = θL) = (1− q)
[
Φ
(

θH−x̃n

σx

)
− Φ

(
θL−x̃n

σx

)]
there

are no APs and there is full revelation that θ = θL; the average price in this case is θL.

Finally, we write the average price as

Qpt =

∫ ∞

x̃n

Q (p(xm)) dxm + P (Q = Qn)Qn + P (Q = θL)θL =

= Φ

(
θH − x̃n

σx

)(
θL + (θH − θL)

(
q +∆(b̃n)

))
+ P (Q = Qn)Qn

= (1− P (Q = Qn))
(
E[θ] + (θH − θL)∆(b̃n)

)
+ P (Q = Qn)Qn

= (1− P (Q = Qn))Qqt(b̃n) + P (Q = Qn)Qn

where we used P (Q > Qn) + P (Q = θL) = Φ
(

θH−x̃n

σx

)
= 1− P (Q = Qn).

We now move on to prove how the average price compares with the price target. First,

consider Qn = E[θ]. Note that Qpt (E[θ]) > E[θ] if and only if ∆(b̃n) > 0. In this case b̃n =

Φ
(

−(θH−θL)
2σx

)
= b(x†), and we know from Appendix A.2 that ∆(b(x†)) > 0.37

Second, when Qn = θH , we have that P (Q = Qn) = 1 and thus Qpt = θH . In this case, the

central bank must crowd out all investors, thus paying the valuation of the most optimistic one.

Third, with some algebra we can show that Qpt(Qn) < Qn if and only if ∆̃(b̃n) <
pn
q
, where

pn = (Qn − θL)/(θH − θL). We have shown in Appendix A.2.3 that ∆̃′(b) < 0 for all b ≥ b∗,

37The function b(·) is defined in (46).
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which implies ∆̃(b) < δ(x(b)). It follows that, for all price targets such that b̃n > b∗,

∆̃(b̃n) < δ
(
x(bn)

)
= δ(x̃n) =

pn
p̂(x̃n)

<
pn
q

which must hold since b̃n > b∗ implies x̃n > x† and in turn p̂(x̃n) > p̂(x†) = q.

This concludes the proof of all statements of Proposition 6.

A.7 Proof of Proposition 8 (APs with structural heterogeneity)

To derive (41), we take the equilibrium expression for the subjective premium of the marginal

agent 1 + λm(Q) = E[θ̃]/Q, take logs and use log(1 + x) ≈ x to get

λm(Q) ≈ log(E[θ̃])− log(Q).

Plugging this into F̃ (λm(Q)) yields expression (41).

The average effects of APs on yields conditional on S̃ ≥ b is

Eb[λm]− E0[λm] =
1

1− b

∫ 1

b

λm(S̃, b) dS̃ −
∫ 1

0

λm(S̃, 0) dS̃

=
1

1− b

∫ 1−b

0

λm(S, 0) dS −
∫ 1−b

0

λm(S̃, 0) dS̃ −
∫ 1

1−b

λm(S̃, 0) dS̃

=
b

1− b

∫ 1−b

0

λm(S̃, 0) dS̃ −
∫ 1

1−b

λm(S̃, 0) dS̃

=
b

1− b

(
(1− b)λ+ (1− b)2(λ− λ)/2

)
−
(
bλ+ b(2− b)(λ− λ)/2

)

=
(
bλ+ b(1− b)(λ− λ)/2−

(
bλ+ b(2− b)(λ− λ)/2

))

= (b(1− b)− b(2− b))(λ− λ)/2

= −b (λ− λ)/2
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The average gains of the central bank are

E[πcb] =
b

1− b

∫ 1

b

(
E[θ̃] −Q(S̃, b)

)
dS̃

=
b

1− b

∫ 1

b

(
E[θ̃] − E[θ̃]/(1 + λm)

)
dS̃

=
b

1− b
E[θ̃]

∫ 1

b

λm(S̃, b)

1 + λm(S̃, b)
dS̃

=
b

1− b
E[θ̃]

∫ 1

b

λ+ (λ− λ)(S̃ − b)

1 + λ+ (λ− λ)(S̃ − b)
dS̃

=
b

1− b
E[θ̃]

[
S̃ − 1

λ− λ
log

(
1 + λ+ (λ− λ)(S̃ − b)

)]1

b

=

=
b

1− b
E[θ̃]

[
(1− b)− 1

λ− λ
log

(
1 +

(λ− λ)(1− b)

1 + λ

)]
=

= bE[θ̃]
[
1− 1

(1− b)(λ− λ)
log

(
1 +

(λ− λ)(1− b)

1 + λ

)]

which is strictly positive for any b ∈ (0, 1).

B Analytical details

B.1 Price Neutrality

We discuss here the conditions under which we obtain that central bank APs are neutral with

respect to prices and allocations, as in Wallace (1981). To do so, we take the stylized framework

introduced in Section 5 and simplify it further, assuming that the household is the investor, the

utility function has curvature, and position bounds are absent.

The household-investor has a generic increasing (and possibly concave) utility function u(·),
and an information set Ωi = {xi, Q, bcb}, which includes an exogenous private signal, the equi-

librium price Q, and the AP quantity bcb. As in Section 5, they have an initial endowment y,

can buy a risk-free asset with a unitary gross rate of return, and a risky bond b that has a price

of Q and a stochastic payoff of θ. The bond is issued by the government in random supply S̃,

and the central bank purchases a publicly observed quantity bcb. The consolidated public sector

levies lump-sum taxes τ = (S̃ − b)(θ −Q) +G to pay for exogenous spending and net losses or

gains from bond issuance.
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The portfolio allocation of the investor is

max
ci,bi

E [u (ci) |Ωi] ,

subject to

ci = bi(θ −Q) + y − τ.

Taking the first-order condition with respect to bi and plugging in the expression for taxes, we

get the optimality condition

E
[
u′
(
(bi + bcb − S̃)(θ −Q) + y

)
(θ −Q) |Ωi

]
= 0,

which pins down individual bond demand as a function of beliefs, expected net bond supply, and

the equilibrium price.

It is easy to see that, everything else equal, the investor only cares about their known net

risk exposure bi + bcb, so any changes in central bank APs will be met by a one-for-one change

in bond demand. This is true for each and every investor in the market. Formally, we can use

the implicit function theorem to show that ∂bi
∂bcb

= −1, that is, central bank APs perfectly crowd

out each investor’s demand in exactly the same way.

Let b∗i (bcb, Q) denote individual bond demand as a function of APs and the bond price. The

reasoning above implies that

b∗i (0, Q) = b∗i (bcb, Q) + bcb for all bcb, Q.

It follows that the total quantity demanded by investors and the central bank is invariant to bcb

and is given by
∫
b∗i (bcb, Q)di+ bcb =

∫
b∗i (0, Q)di. As a consequence, the price Q that clears the

market (i.e., such that
∫
b∗i (0, Q)di = S̃) is also invariant to APs. In this setting, APs are thus

neutral because they crowd investors out in the same way. That is, all investors participate in

the bond market, and APs have a homogeneous effect on their demand (the intensive margin).

A direct implication of this reasoning is that any departure of the model such that aggregate

demand does vary with APs delivers the results that central bank intervention is non-neutral.

The assumption of heterogeneous beliefs and position bounds is one such departure, because it

implies that the bounds bind for some investors, who therefore do not respond one-for-one to

APs. Our framework features an extreme version of this mechanism, because risk neutrality

implies that all investors are against their position constraint. As a result, APs crowd out a
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specific part of the investor distribution, namely the most pessimistic agents among those that

would buy bonds absent APs. That is, APs affect the market participation of some investors

(the extensive margin), while leaving the demand of all other investors unaffected.

B.2 Microfoundation of Qpas when S̃ < b

We provide explicit microfoundations for the argument in Footnote 9.

We assume there exists a small disturbance in the bond market, such that there is always an

infinitesimal residual quantity of bonds traded by investors, even when the central bank quantity

target exceeds supply. Formally, net supply is

S = ϵ if S̃ < b,

where ϵ is a random variable uniformly distributed in [0, ϵ̄], with ϵ̄ arbitrarily small.

First, notice that investors correctly recognize states where S̃ < b, because they observe

central bank purchases below the quantity target (bcb < b). In these states, xm has the same

distribution that it would have when the central bank has a target b = 1 − ϵ̄ in the main text,

as discussed in the paragraph around equation (11).

Therefore, in analogy to Mb, we denote the distribution of xm conditional on S = ϵ by M1−ϵ̄,

whose p.d.f is fM1−ϵ̄(xm)/ϵ̄ and is such that limϵ→0 fM1−ϵ̄(xm) = limb→1 fMb
(xm). This means

that, no matter how small is [0, ϵ̄], the support of xm will always consist of a fully revealing

region [x(1 − ϵ̄), x(1 − ϵ̄)) and a non-revealing region [x(1 − ϵ̄),+∞). Using the last statement

of Proposition 2 and the fact that limϵ̄→0{x(1 − ϵ̄), x(1 − ϵ̄)} = limb→1{x(b), x(b)}, we finally

have that limϵ̄→0 E[Q] = limb→1 E[Q] = E[θ], which is equal to E[Qpas] under our assumption

that Qpas = θ.

B.3 Distribution of xi

The marginal p.d.f. of xi is

fN (x) =
∑

j∈{L,H}

1

σx

qjϕ

(
θj − x

σx

)
(54)

where qH = q and qL = 1− q.
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B.4 Distribution of xm conditional on xi

The p.d.f. of the market signal xm conditional on xi is given by

fMb | N (xm |xi) =
∑

j∈{H,L}
fMb | N ,θ(xm |xi, θj)fθ | N (θ |xi)

=
∑

j∈{H,L}
fMb | θ(xm | θj)fθ | N (θ |xi)

=
∑

j∈{H,L}
fMb | θ(xm | θj)

fN | θ(xi | θj)qj
fN (xi)

where the second line follows from the conditional independence of xm and xi given θ, the third

line from Bayes’ law, and the distributions Mb,N are given in (11) and (54), from which the

distributions Mb | θ,N | θ can be backed out.

C Calibration

We provide further details about Section 3.5. First, we present the generic bond pricing frame-

work that we use to compare our model with the data and interpret our results. Second, we

provide further details on the data we use for our calibration exercise.

C.1 Interpretation

A generic bond pricing model. We consider a textbook asset pricing model, such as that

in Chapter 1 of Cochrane (2005). Take a nominal bond that, at the end of the period, delivers a

stochastic real payoff denoted by θ̃. This random payoff reflects various sources of risk, including

inflation or default during the holding period, as well as resale price fluctuations in the case

of a long-term bond. The equilibrium bond price conditional on a generic aggregate state xm

satisfies Q(xm) = E[ζ θ̃ |xm], where ζ is a generic stochastic discount factor such that the real

risk-free rate is given by 1+ r = 1/E[ζ |xm]. Using the definition of covariance and recalling that

θ := θ̃/(1 + r), we can rewrite the bond pricing equation as

λ(xm) = E[θ |xm]−Q(xm) (55)
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where λ(xm) := Cov(ζ, θ |xm) is a generic risk adjustment, which includes various premia such

as those for term, liquidity, default, and inflation risk.

Our model. Consider now our model, where equation (18) implies that the average wedge

−∆(b) = E[θ]−Q

is the natural (negative) counterpart of the average equilibrium bond premium in the simple

generic bond pricing framework of (55); in particular ∆(b) = −E[λ].

Belief heterogeneity. To account for the distribution of individual beliefs in our model, we

compute the individual expectation of the distribution of the learning wedge across states

E[θ −Q(p(xm)) |xi] =

∫ +∞

−∞
[θ −Q(p(xm))]fM0 | N (xm |xi)dxi (56)

where note the following holds: E[ θ |xi] = E[E[ θ |xm] |xi]. This represents the expected gain

for an investor observing private signal xi, but before observing the state xm. By (55), E[θ −
Q(p(xm)) |xi] = E[λ |xi] in a generic bond pricing framework.

Remarks on ex-ante view. Finally, to address the dynamic nature of the data, we adopt an

ex-ante perspective—that is, before any shock realizes. This approach also avoids taking a stand

on what identifies xm in the data. In this case, investors would agree the value of the asset is

given by E[λ] =
∫
E[λ |xi] fN (xi) di.

C.2 Calibration Exercise and Data Details

Here we explain how we map elements of our model to observables for calibration. We focus

on the 18th of March 2009, the date of the first announcement of Large-Scale Asset Purchases

that would be directed to long-term treasuries. To compute expected real bond returns at

the individual forecaster level, we take the nominal yield to maturity of the 10-year constant-

maturity US Treasury bond on March 17th, 2009, and subtract expected average inflation over

the maturity of the bond (i.e., 10 years) which we take from the 2009 Q1 release of the Survey

of Professional Forecasters (SPF) run by the Philadelphia Fed. An alternative approach to

derive the distribution of real return forecasts would be to take bond yield forecasts and subtract
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inflation forecasts. We choose not to follow this approach because, as is well known, in the SPF

the survey question about long-term forecasts of Treasury yields was ambiguously phrased—and

the wording was indeed changed from 2014:Q1.

LSAP1 data. As a reference for the empirical effect of the LSAP1 announcements on real

yields, we take the two-day change in the real yield of 10-year TIPS from Table 4 of Krishna-

murthy and Vissing-Jorgensen (2011), which is -59 basis points. An alternative approach would

be to take the two-day change in the yield of nominal 10-year bonds from Table 1, which is

-41 basis points, and then subtract the 22 basis point increase in 10-year inflation swaps, which

delivers a comparable total change of -63 basis points.

As a reference for the size of APs in the model, we take the size of the LSAP1 announcement

relative to the face value of marketable, non-indexed U.S. Treasury bonds and notes with residual

maturity larger than 5 years as of February 2009, amounting to $585.821 billions in Treasury

notes and $609.353 billions in Treasury bonds, as stated in the monthly statement of the public

debt of the United States on the 28 of February 2009. The Fed announcement of purchasing up

to “300 billion of longer-term Treasury securities over the next six months” is thus equivalent to

about 25% of the existing marketable stock of debt (or about 20% if we include TIPS).

Notably, the absolute values of θ do not affect the average wedge—only the 500 basis point

range matters—reinforcing that our model captures price elasticities rather than price levels.
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