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Abstract

Most sovereign bonds today include “aggregated” collective action clauses (CACs).

We study the problem of a government that seeks to restructure multiple bond series in

the presence of such provisions. We characterize how the optimal aggregation procedure

and restructuring offers depend on the heterogeneity of bondholders within and across

series, and on the relative size of the bonds. We then analyze how aggregated CACs affect

the bond market equilibrium before restructuring when investor bases are determined

endogenously. Our results shed light on the aggregation method employed by Argentina

and Ecuador in 2020, and on the ongoing reform of Euro-Area CACs.
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Introduction

For over two decades, policy efforts aimed at ensuring the timely and orderly resolution of

sovereign debt distress have revolved almost entirely around collective action clauses (CACs).1

These contractual provisions enable the affirmative vote of a qualified majority of bondholders

to bind a dissenting minority to the terms of a restructuring proposal—emulating the majority

voting provisions of corporate insolvency laws. CACs have been systematically inserted in the

international bonds of major emerging market sovereign issuers with a view to alleviate the

“holdout” problem in sovereign debt workouts, whereby a minority of creditors can hinder a

restructuring and thus increase the cost of debt distress.2 Since 2013, the debt securities of

Euro-Area governments also incorporate majority amendment provisions.

In practice, the formulation of collective action clauses varies and has evolved over time.

The now standard “enhanced” CACs provide that, when attempting to restructure multiple

bond series, the sovereign can choose among a menu of three voting procedures (or “modi-

fication methods”) to determine which series are restructured according to the terms of the

proposal (see ICMA (2014)). Specifically:

i. the series-by-series voting procedure operates separately within each series, with a su-

permajority threshold usually set at 75%;

ii. the “two-limb” method relies both on the voting outcomes within each series and on the

aggregate outcome across series—the voting thresholds in this hybrid procedure being

typically set at 50% and 66 2/3%, respectively;

iii. the “single-limb” procedure only relies on the aggregate vote across series, with a super-

majority threshold of 75% and the additional constraint—known as uniform applicability

condition—that all bond series receive the same restructuring terms.

In view of their widespread adoption,3 this paper aims to provide an economic analysis

of enhanced CACs. Taking their specification as given, our objective is to elucidate how the

sovereign can best take advantage of these voting provisions in a debt workout and to cast

light on their broader implications. To do so, we consider an environment with multiple bond

series and heterogeneous bondholders—allowing for heterogeneity both within and across se-

ries. Whereas the former type of heterogeneity may arise from differences in discount rates,

1In 2002, IMF’s First Deputy Managing Director Anne Krueger envisioned a statutory bankruptcy regime
for countries, but the idea of a “sovereign debt restructuring mechanism” failed to gather political support.
More recently, the Common Framework endorsed by the G20 in November 2020 focuses on the coordination
among official lenders, as well as between official and private creditors, for low-income countries.

2See Eichengreen and Portes (1995) for early proposals towards better coordination among creditors in
the resolution of sovereign debt distress. For further background information on sovereign CACs, see among
others Buchheit and Gulati (2002) and Gelpern et al. (2016), as well as IMF (2014).

3Since their introduction in 2014, enhanced CACs have been inserted in 91% of new international sovereign
bonds issued by emerging markets and low-income countries (IMF (2020)).
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balance sheets, regulation, information, or litigation skills, the latter can be due to differences

across bonds in terms of maturity or coupon rate, as well as in their investor bases. Our

contribution is twofold: first, we characterize the choice of aggregation method that mini-

mizes the restructuring cost for the debtor government; second, we analyze how the design of

CACs and the anticipation of their optimal use by the government affects the bond market

equilibrium prior to restructuring.

In our baseline analytical framework, we consider the problem of a sovereign that seeks to

restructure multiple bonds held by atomistic investors. When deciding whether to accept a

restructuring offer, bondholders have heterogeneous reservation values. We initially take the

distribution of reservation values as given for each bond. Relative to the two-limb procedure,

single-limb aggregation comes with a benefit arising from the removal of series-by-series con-

straints, but also with a cost as it prevents differentiated offers across bonds. In a two-bond

case, we characterize how the cost-minimizing aggregation procedure and restructuring offers

depend on the voting thresholds, the heterogeneity across bonds, and their relative sizes.4

In particular, we show that resorting to single-limb aggregation is valuable when one bond

is held by investors who are especially demanding in terms of recovery value and this bond is

small in the restructuring pool. Under such conditions, it can be optimal for the government to

use the single-limb procedure and make a uniform offer that attracts a low consent share from

that bond. However, when the bonds are relatively homogeneous, or when the “expensive”

bond—i.e., the bond whose holders tend to have higher reservation values—is large, the series-

by-series constraints are not binding, and single-limb voting only comes at a cost due to the

uniform applicability restriction. Besides, the single-limb method typically entails a higher

aggregate threshold, which contributes to making it less appealing.

This first set of results sheds light on the approach employed by Argentina and Ecuador to

restructure their international bonds in August 2020. Then, in the first two instances where

enhanced CACs were ever tested, both governments opted in favor of two-limb aggregation.5

This move took many commentators by surprise. Indeed, in view of its highly effective use

in the context of the Greek private restructuring of 2012 (Zettelmeyer et al. (2013)), the

presumption in the drafting of enhanced CACs was that the newly-introduced single-limb

procedure would become the method of choice to conduct distressed bond exchanges.6 In-

stead, our analysis establishes that single-limb aggregation dominates only under very specific

circumstances.

4For standard threshold values, the series-by-series method is dominated by two-limb voting, hence our
analysis focuses on the optimal cross-series aggregation procedure.

5For a detailed account of the 2020 Argentine restructuring, in particular, see Buchheit and Gulati (2020).
6See, e.g., IMF (2014), Gelpern et al. (2016), and Sobel (2016). The introduction of the single-limb

procedure constituted the real innovation in the drafting of enhanced CACs. Series-by-series CACs had been
inserted in English-law governed sovereign issues in the 1990s, and then adopted under New York law in the
early 2000s. The two-limb method was first introduced in 2003 in the sovereign bonds of Uruguay.
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The second part of our analysis embeds the government’s restructuring problem into

two distinct equilibrium settings to investigate the implications of aggregated CACs on the

sovereign bond market in contexts where investor bases and reservation value distributions

are determined endogenously. In the first extension of our baseline setup, we analyze how the

design of CACs affects the potential entry of (non-atomistic) vulture funds—who may be able

to block a restructuring by acquiring sufficiently large positions. We show that, even though

it may not be employed in equilibrium, the single-limb procedure can nonetheless play an

important role as an off-equilibrium deterrent to vultures’ holdout attempts.

Taken together, the aforementioned results imply that the two aggregation methods should

be viewed as complementary tools in the restructuring arsenal, and shed a critical light on

the ongoing reform of Euro-Area sovereign CACs. By virtue of the Treaty establishing the

European Stability Mechanism (ESM), all Euro-Area public debt securities issued after Jan-

uary 2013 incorporate two-limb CACs.7 In November 2021, however, Euro-Area governments

agreed, as part of an amendment of the ESM Treaty, to replace two-limb-only with single-

limb-only CACs.8 Our analysis suggests that combining single-limb and two-limb aggregation,

as done under the standard enhanced CACs, would make the debtor country strictly better

off: whereas the former discourages the entry of vulture funds, the latter often turns out to

be the optimal restructuring method once vultures have been kept at bay.

In the second extension of our baseline setup, bonds explicitly differ in terms of their ma-

turities and coupon rates, and the bond market is populated by a continuum of investors with

heterogeneous discount rates. Investors sort into bonds in an initial trading stage and, in the

event of a restructuring, the government optimally chooses the recovery values and modifi-

cation method. In equilibrium, the anticipation of the government’s restructuring approach

affects the outcome of the trading stage, and the government’s restructuring approach itself

depends on the bond-specific reservation value distributions—determined by the sorting of

investors in the prior stage. In this setting, when assessing the impact of the debt maturity

composition on the equilibrium restructuring procedure and payouts across bonds, one must

take into account how a change in relative sizes affects the heterogeneity in reservation value

distributions via the endogenous sorting of investors across maturities. We provide a numer-

ical illustration where an increase in the relative size of the more “expensive” bond actually

plays in favor of using the single-limb aggregation procedure, by increasing the degree of het-

erogeneity in reservation values across bonds. Finally, we illustrate how the design of CACs

can affect relative bond valuations ahead of a restructuring in this setup.

7Euro CACs have not been tested yet. It is worth noting that, although most Euro-Area debt securities are
governed by domestic law, the jurisprudence of European courts in the wake of the Greek restructuring sets
important limits to potential governmental interference with bondholder’s property rights (Grund (2017)).

8The decision will enter into force once the parliaments of all member states have ratified the Amending
Agreement. At the time of writing, Italy is the only member state that has not yet ratified the agreement.
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Related Literature. Our work contributes to the broad analysis of how the legal environ-

ment shapes the sovereign debt market. The seminal paper by Eaton and Gersovitz (1981)

puts at center stage the lack of enforceability stemming from the absence of an international

bankruptcy court and from the legal doctrine of sovereign immunity.9 Bolton and Jeanne

(2007) analyze how the weak contractual environment and lack of a bankruptcy regime af-

fect the types of debt claims used in international borrowing and lending. Another important

feature of the sovereign debt market—the absence of a seniority structure across debt claims—

can be traced back to the common use of pari passu and negative pledge clauses in sovereign

debt contracts, giving rise to the debt dilution problem analyzed in Bolton and Jeanne (2009),

Chatterjee and Eyigungor (2015), and Hatchondo et al. (2016) among others.

A recent strand of the sovereign debt literature—see, e.g., Yue (2010), Benjamin and

Wright (2013), Hatchondo et al. (2014), Dvorkin et al. (2021) and Arellano et al. (2023)—

focuses on the restructuring process, studying its quantitative importance and examining the

determination of the level of haircuts and length of negotiations.10 In particular, Pitchford

and Wright (2012) analyze how the type of settlement process affects delays in an environment

where the government cannot commit to settling on worse terms with holdouts. Instead, we

zoom in on the role of contractually specified voting procedures in determining payouts in

sovereign workouts, and analyze their impact on the bond market ahead of the restructuring.

Existing theoretical work on majority amendment provisions in sovereign bonds—such as,

e.g., Bi et al. (2016), Engelen and Lambsdorff (2009), and Haldane et al. (2005)—concentrates

on series-by-series CACs. Considering setups featuring one bond and a single set of creditors,

these papers study how strategic interactions and restructuring outcomes are affected by the

introduction of a supermajority rule in place of a unanimity requirement.11 Closer to our

paper, Bond and Eraslan (2010) analyze the optimal choice of voting rule by the debtor

government. By design, this prior work is silent on cross-bond heterogeneity and aggregation.

Instead, we adopt a setting with multiple bond series to address issues specifically related to

the now widely adopted enhanced CACs and to the design of aggregated Euro CACs.12

On the empirical front, while the literature on private debt workouts—see, e.g., Cruces

and Trebesch (2013)—mostly focuses on aggregate restructuring outcomes, Sturzenegger and

Zettelmeyer (2006, 2008) and Zettelmeyer et al. (2013) document within-deal variation in

haircuts for selected episodes. More recently, Asonuma et al. (2023) systematically explore

the relationship between haircuts and maturity at the bond level, and Fang et al. (2021)

9Although sovereigns are no longer immune from suits in key jurisdictions such as the U.S. and the U.K.,
they are still effectively immune from attachment attempts by judgment creditors.

10See also Bulow and Rogoff (1989) for an early analysis of payouts in sovereign debt restructurings.
11Ghosal and Thampanishvong (2013) analyze the impact of a change in voting threshold on interim and

ex ante efficiency in the presence of debtor moral hazard and incomplete information.
12Early analyses of CACs in a one-bond setting are still relevant in practice in situations where a single

bond is being restructured, or when the bonds being restructured only feature old-style series-by-series CACs.
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analyze the combined impact of CACs and haircuts on participation rates within restructuring

episodes. None of these studies investigates specifically the impact of aggregated CACs on

restructuring outcomes. As more evidence on the restructuring of bonds with aggregated

CACs accumulates in the future, our analysis can provide guidance for further empirical

work, especially with regard to the choice of aggregation procedure.

Our paper is also connected to a series of empirical studies that investigate how the inclu-

sion of CACs affects sovereign bond prices, including the early contribution by Eichengreen

and Mody (2004). Among recent work on the topic, Picarelli et al. (2019) and Carletti et al.

(2021) analyze the pricing of Euro CACs, while Chung and Papaioannou (2021) document the

impact of enhanced CACs in normal times and during distress episodes. To our knowledge,

no study has yet explored the differential price impact of various forms of aggregated voting

provisions, and how it varies across bonds. Theoretical predictions on these effects must rely

on a fine understanding of how aggregated CACs play out in a restructuring. Our analysis

could guide such investigations.

Outline. The paper proceeds as follows. Section 1 describes the tradeoff that the government

faces in choosing its restructuring approach and formulates general sufficient optimality condi-

tions. Section 2 offers an analytical characterization of the optimal aggregation procedure and

restructuring proposal as a function of the model primitives in the two-bond case. Section 3

provides closed-form results and numerical illustrations in a parametric example. Section 4

analyzes how the design of CACs affects the potential entry of vulture funds. Section 5 embeds

the government’s problem in a setting where bond-specific reservation value distributions arise

endogenously from the sorting of heterogeneous investors into bonds. Section 6 concludes. All

proofs are in the appendix.

1 The Restructuring Problem

This section lays out a general framework to analyze the government’s optimal use of modi-

fication provisions in the restructuring of multiple bonds, allowing for creditor heterogeneity

both within and across bond series.13

Bonds, Restructuring Proposal, and Creditor Heterogeneity. There is a countable

set B of bond series to be restructured, with |B| ≥ 2. The relative size of bond series i,

expressed as a fraction of the face value of the entire restructuring pool, is given by λi, with∑
i∈B λi = 1. A restructuring proposal w = {wi}i∈B made by the government consists of

series-specific recovery values wi per unit of face value. Upon receiving an offer from the

government, a bondholder accepts if the proposed recovery value wi is at least as high as her

13In practice, a bond series typically corresponds to a unique ISIN, although it may sometimes include bonds
with different ISINs but same payment terms.
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own idiosyncratic reservation value.14 To capture within-series creditor heterogeneity as well as

cross-series heterogeneity arising from differences in creditor base and/or bond characteristics

(e.g., payment terms), we assume that the reservation values of holders of bond series i are

distributed according to the cumulative distribution function Fi, known by the government.15

The share of holders of series i that give their consent to an offer w is thus equal to Fi(w).

For expositional simplicity, we assume that all investors are atomistic and that the CDFs are

continuous. Section 4 analyzes an extension where a large investor can take blocking positions.

Modification Methods. The sovereign can choose among the three voting procedures out-

lined in the introduction to implement a restructuring. We use the subscript 0 to denote

the series-by-series procedure, and we use the subscripts 1 and 2 to denote the single-limb

and two-limb procedures, respectively. Under series-by-series voting, an entire bond series

i is restructured if the consent share within this series is greater than or equal to a given

threshold τ0. According to the two-limb procedure, all bond series in the aggregated pool are

restructured if the consent share within each series is greater than or equal to the threshold τ s2

and the consent share over the entire pool is no smaller than τ a2 > τ s2. Finally, under single-

limb voting, the uniform applicability condition requires that the same offer be made to all

bond series,16 and CACs are triggered as long as an aggregate threshold τ1 is reached.

1.1 Government’s Problem

The government seeks to restructure all bonds series i ∈ B at minimum cost. The set of

constraints that need to be satisfied by the restructuring proposal to achieve this objective

depends on the elected modification method.17 With series-by-series voting, the restructuring

offer w = {wi}i∈B must be such that

Fi(wi) ≥ τ0 for all i ∈ B.
14We take these reservation values as exogenous, abstracting from explicit strategic considerations that may

affect the expected value of holding out. There exists little evidence on holdout payoffs, apart from well-
publicized cases such as the Argentine settlement following the 2001 default—see Cruces and Samples (2016).
Schumacher et al. (2021) provide empirical evidence on the incidence of sovereign debt litigation.

15In practice, the government learns about reservation values during preliminary talks with bondholder
committees. In Appendix B, we consider an environment where the government faces some uncertainty over
the consent shares that a restructuring proposal will attract. We show that the presence of uncertainty does
not alter the insights from our analysis.

16This condition is meant to provide a safeguard to ensure inter-creditor equity, by avoiding that holders of
large bond series dictate terms that are discriminatory against smaller series (see IMF (2014)).

17We assume that a unique procedure is applied to the entire pool B. In practice, a government may
partition B and use different modification methods on different subsets of bonds.
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Under the two-limb method, the offer w must satisfy the aggregate constraint

∑

i∈B
λiFi(wi) ≥ τ a2 , (1)

along with the individual consent requirements

Fi(wi) ≥ τ s2 for all i ∈ B. (2)

Finally, under single-limb aggregation, the “uniform” offer w must be such that

∑

i∈B
λiFi(w) ≥ τ1.

In choosing a modification method and the offer wi made to each bond series i ∈ B, the
government wishes to minimize the total payout

C = λ.w =
∑

i∈B
λiwi.

We shall proceed under the realistic assumption that

1

2
≤ τ s2 < τ a2 ≤ τ1 ≤ τ0 < 1. (3)

Under (3), two-limb aggregation dominates (at least weakly) series-by-series voting.18 We will

therefore restrict our attention to the optimal choice of aggregation procedure.

1.2 Optimal Restructuring Offers

A preliminary step towards comparing two-limb vs single-limb aggregation consists in charac-

terizing the optimal restructuring proposal under each procedure. The optimal uniform offer

u∗ under single-limb voting is such that the average consent share, weighted by the bond face

values, is equal to the aggregate threshold τ1, i.e.,

∑

B
λiFi(u

∗) = τ1, (4)

and the minimum restructuring cost C1 under single-limb voting is equal to u∗.

18In the ICMA standard published in 2014-15, the thresholds are τ0 = τ1 = 3/4, τ s2 = 1/2, and τa2 = 2/3. It
is worth noting that, in the Uruguay 2003 version of CACs, the voting thresholds are such that τ s2 < τ0 < τa2 ,
so that the optimal choice between series-by-series voting and two-limb aggregation is non-trivial.
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Instead, the optimal two-limb offer is the solution to the constrained optimization problem

C2 ≡ min
{wi}

∑

B
λiwi

subject to

∑

B
λiFi(wi) = τ a2 , and Fi(wi) ≥ τ s2, i ∈ B.

Since τ a2 > τ s2, the aggregate constraint (1) is binding and holds as an equality. However, it is

a priori unclear which of the individual constraints, if any, may be binding.

Auxiliary Problem. It will be useful in our analysis to consider the auxiliary problem

min
{wi}

∑

B
λiwi subject to

∑

B
λiFi(wi) = τ, (5)

for a given generic aggregate threshold τ . The government’s cost-minimization problem under

single-limb and two-limb voting can be construed by reference to this problem. Under single-

limb voting, the aggregate threshold is τ1 and the offer needs to satisfy the additional “uniform

applicability” restriction, which simplifies the problem into (4). Instead, under two-limb

voting, the aggregate threshold is τ a2 and the government needs to take into account the

additional series-by-series constraints (2). Whenever the solution to the auxiliary problem for

τ = τ a2 satisfies the latter constraints, it therefore coincides with the optimal two-limb offer.

The Lagrangian for the auxiliary problem is

L =
∑

B
λiwi + ξ

(
τ a2 −

∑

B
λiFi(wi)

)
.

Assuming differentiability, the first-order condition is

F ′
i (wi) = ξ−1, for all i ∈ B.

Intuitively, because a marginal increase dw in the offer to series i raises the aggregate consent

share by λiF
′
i (wi)dw at a cost of λidw, interior optimality requires that the “bang for the

buck” F ′
i (wi) be equalized across all bonds.

1.3 Optimal Voting Procedure: Key Tradeoff

Comparing across procedures, the unique appeal of single-limb voting comes from the fact

that it removes the need to satisfy the series-by-series constraints; however, resorting to this

method does entail a cost arising from the uniform applicability restriction—let alone the
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higher aggregate consent threshold when τ1 > τ a2 . These observations immediately deliver

sufficient conditions under which two-limb aggregation is optimal.

Proposition 1. Two-limb aggregation is (at least weakly) optimal if one of the following

conditions holds:

(i) The optimal single-limb uniform offer, given by the unique solution u∗ to (4), is such

that Fi(u
∗) ≥ τ s2 for all i ∈ B;

(ii) The solution ŵ to the auxiliary problem (5) is such that Fi(ŵi) ≥ τ s2 for all i ∈ B.

Furthermore, if condition (ii) holds, the optimal two-limb offer coincides with ŵ.

Indeed, the unique advantage of single-limb aggregation is worthless if any of the two condi-

tions holds, hence the two-limb procedure dominates in these configurations. Going beyond

these general statements requires making further assumptions on the environment—that is,

on the number of bonds and their relative sizes λi, on the reservation value distributions Fi,

and on the various voting thresholds.

2 Two-Bond Case

We now focus on the case where there are only two bond series outstanding, H and L, with

relative weights λH = λ ∈ (0, 1) and λL = 1 − λ. We denote by Fi : R+ → [0, 1] the

cumulative distribution function of reservation values for bond i ∈ {H,L}, which we assume

to be strictly increasing and twice differentiable on R+ with Fi(0) = 0, and we denote by fi

the corresponding density function. We assume that holders of bond H tend to have higher

reservation values, so that

FH(w) < FL(w) for all w > 0, (6)

or equivalently

F−1
L (τ) < F−1

H (τ) for all τ ∈ (0, 1).

Because it takes a more generous offer to reach a certain approval rate for bond H than for

bond L, we will sometimes loosely refer to bond H as the “expensive” bond.

2.1 Single-Limb Aggregation

Under single-limb voting, the government’s restructuring proposal must satisfy the uniform

applicability condition, requiring the offer to be the same across series. As per (4), the cost-

minimizing offer is given by u∗ = u(λ, τ1), where u(λ, τ) is implicitly defined as the unique
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solution to the equation

λFH(u) + (1− λ)FL(u) = τ. (7)

The following observations obtain immediately.

Lemma 1. The consent shares under the optimal uniform offer u∗ are such that

FH(u
∗) < τ1 < FL(u

∗). (8)

Moreover, u∗ is strictly increasing in τ1 and in the relative size λ of the expensive bond, with

lim
λ↓0

u∗ = F−1
L (τ1) and lim

λ↑1
u∗ = F−1

H (τ1). (9)

Next, we establish conditions under which FH(u
∗) ≥ τ s2, in which case the optimal single-limb

offer u∗ satisfies both of the series-by-series constraints imposed under two-limb voting.

Lemma 2. If F−1
L (τ1) ≥ F−1

H (τ s2), the optimal uniform offer u∗ is such that FH(u
∗) ≥ τ s2 for

any λ ∈ (0, 1). Otherwise, FH(u
∗) ≥ τ s2 if λ ≥ λ†, where λ† is such that u(λ†, τ1) = F−1

H (τ s2).

Naturally, the optimal uniform offer u∗ = u(λ, τ1) is more likely to satisfy the individual

constraints for high values of τ1 and low values of τ s2. Besides, since the offer u∗ induces an

average consent share τ1, greater homogeneity across bonds makes it more likely that FH(u
∗)

is close to τ1 and thus greater than τ s2. Finally, as captured by the second part of the lemma,

a higher relative size λ of the expensive bond H makes it more likely that the constraint on

this bond be satisfied by increasing the amount of the uniform offer u∗, with the cutoff value

λ† increasing in the degree of cross-series heterogeneity.

2.2 Two-Limb Aggregation

Under two-limb aggregation, the optimal offer is the solution to

min
wH , wL

λwH + (1− λ)wL

subject to

λFH(wH) + (1− λ)FL(wL) = τ a2 , (10)

Fi(wi) ≥ τ s2, i = H,L. (11)

Let us first focus on the aggregate constraint (10), and let W denote the set of offers wL to

the holders of bond L such that this constraint can be met for some offer wH to bond H.19

19When the relative size λ of bond H is sufficiently small, meeting the aggregate consent condition (10)
is impossible if wL is too small (resp., too high), even with an arbitrary large wH (resp., even when setting
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Given an offer wL ∈ W to bond L, the offer wH that the sovereign needs to make to holders

of bond H in order to satisfy the aggregate condition (10) is given by

wH = F−1
H

(
τ a2 − (1− λ)FL(wL)

λ

)
≡ g(wL). (12)

The function g is strictly decreasing in wL, reflecting the fact that if a more generous offer is

made to bond L—thus increasing the consent share for this series—a less appealing offer can be

made to the other bond. Furthermore, one can derive the following equivalence relationships

from the aggregate condition (10), relating the relative consent shares (and offers) across the

two bonds and their absolute levels.

Remark 1. For any pair of offers satisfying the aggregate requirement (10), i.e., for any

(wH , wL) such that wL ∈ W and wH = g(wL),

FH(wH) < FL(wL) ⇔ FL(wL) > τ a2 ⇔ FH(wH) < τ a2 ,

and

wH > wL ⇔ wL < u(λ, τ a2 ) ⇔ wH > u(λ, τ a2 ).

Auxiliary Problem. To characterize the optimal offer under two-limb aggregation, we

consider the corresponding auxiliary problem

min
wH , wL

λwH + (1− λ)wL subject to λFH(wH) + (1− λ)FL(wL) = τ a2 ,

and we denote its solution by ŵ = (ŵH , ŵL). This problem can be restated more concisely as

min
wL∈W

λg(wL) + (1− λ)wL, (13)

and one can show that the objective function in (13) is (strictly) convex when

d log fL(wL)

dwL

<
d log fH

(
g(wL)

)

dwL

. (14)

In particular, (14) is satisfied if the two densities fH and fL are strictly decreasing. Assuming

convexity, an interior solution to (13) is pinned down by the first-order condition

fL(wL) = fH
(
g(wL)

)
. (15)

wH = 0). See Remark A-1 in the appendix for an explicit definition of W ≡ W(λ, τa2 ).
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Optimal Two-Limb Offer. The optimal two-limb offer coincides with the auxiliary solu-

tion ŵ = (ŵH , ŵL)—such that ŵL minimizes (13) and ŵH = g(ŵL)—as long as the latter

satisfies the two individual constraints (11), i.e., when

τ s2 ≤ FL(ŵL) ≤
τ a2 − λτ s2
1− λ

. (16)

The second inequality in (16) guarantees that FH(ŵH) ≥ τ s2, and is trivially satisfied if λ ≥
(1− τ a2 )/(1− τ s2). On the other hand, the inequality FL(ŵL) ≥ τ s2 is necessarily satisfied when

λ is sufficiently small. Intuitively, when a bond series is large relative to the total face value

of the restructuring pool, the need to reach the high aggregate consent level τ a2 makes it likely

that the series-by-series requirement is met for this bond.

Lemma 3. Suppose that the auxiliary problem (13) is strictly convex with an interior solution.

The solution ŵ to this problem satisfies the series-by-series constraint on bond H when λ ≥
(1− τ a2 )/(1− τ s2) or if

fL

(
F−1
L

(
τ a2 − λτ s2
1− λ

))
≤ fH

(
F−1
H (τ s2)

)
, (17)

and it satisfies the series-by-series constraint on bond L when λ ≤ (τ a2 − τ s2)/(1− τ s2) or if

fL
(
F−1
L (τ s2)

)
≥ fH

(
F−1
H

(
τ a2 − (1− λ)τ s2

λ

))
. (18)

Conditions (17)-(18) ensure that the first-order optimality condition (15) can be met without

violating the individual constraints (11). When instead ŵi < F−1
i (τ s2), the individual con-

straint on bond i is binding: the optimal two-limb offer sets wi = F−1
i (τ s2) and adjusts the

recovery value on the other bond downwards to satisfy the aggregate consent condition.

2.3 Optimal Restructuring Procedure

In view of Proposition 1, we therefore obtain the following result.

Proposition 2. If either the conditions stated in Lemma 2 or those provided in Lemma 3

hold, two-limb aggregation is optimal.

Indeed, the conditions stated in Lemmas 2 and 3 guarantee that the optimal uniform offer and

the auxiliary solution satisfy all series-by-series constraints, respectively—the unique advan-

tage of the single-limb procedure being worthless in either case. In view of our discussion of

Lemma 2, two-limb voting is more likely to dominate for high values of τ1 and low values of τ s2,

for low levels of heterogeneity across bonds, and for a high relative size λ of the expensive

13



bond.20 To complement Proposition 2, it is worth noting that

τ1 > τ a2 ⇒ lim
λ↓0

C1 = F−1
L (τ1) > F−1

L (τ a2 ) = lim
λ↓0

C2, (19)

hence when τ1 > τ a2 , two-limb voting also dominates for λ sufficiently small.

The last result of this section establishes sufficient conditions under which single-limb

voting dominates.

Proposition 3. Suppose that τ1 < FL

(
F−1
H (τ s2)

)
and the two densities fH and fL are strictly

decreasing and intersect only once, at a point w̃ ∈
(
F−1
L (τ1), F

−1
H (τ s2)

)
. Then single-limb voting

is optimal (i) for λ sufficiently small when τ a2 = τ1, and (ii) in the neighborhood of the point

λ̃ > 0 such that u(λ̃, τ1) = w̃ when τ1 − τ a2 is not too large.

The heterogeneity across bonds must be sufficiently large for the premise of Proposition 3 to

be satisfied, as will be illustrated in the next section. Contrasting Part (i) of the proposition

with (19) reveals that, for low values of the relative weight λ, the optimal voting procedure

depends crucially (and in an intuitive way) on whether τ1 > τ a2 or τ1 = τ a2 . The second part of

the proposition points to a special parameter configuration in which the uniform applicability

restriction comes at little cost while the unique advantage of single-limb voting is valuable—in

which case this modification method is clearly optimal.

3 Parametric Example

We now consider a particular incarnation of the two-bond case where reservation values for

each bond are exponentially distributed, that is,

Fi(w) = 1− e
− w

ϕi , for w ≥ 0, (20)

implying that F−1
i (τ) = −ϕi log(1− τ), for all τ ∈ (0, 1). As before, we suppose that holders

of bond H tend to have higher holdout values. We thus proceed under the assumption that

γ ≡ ϕH

ϕL

> 1.

20In the parametric example of Section 3, we show that the auxiliary solution is also more likely to satisfy
the series-by-series constraints for low levels of heterogeneity and high values of λ.
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3.1 Closed-Form Analytical Results

Under the exponential specification, the auxiliary problem is strictly convex and the consent

shares under the auxiliary solution are given by21

FL(ŵL) =
λ(γ − 1) + τ a2
λ(γ − 1) + 1

> τ a2 , (21)

and

FH(ŵH) =
τ a2 − (1− λ)FL(ŵL)

λ
=

1 + λ(γ − 1)− γ(1− τ a2 )

1 + λ(γ − 1)
< τ a2 . (22)

From (21)-(22), one can see that only the individual constraint on bond H may ever be

binding in this example. Moreover, the auxiliary consent shares (and corresponding offers ŵL

and ŵH) are increasing in the relative size λ of the more demanding bond, and one can check

that FL(ŵL) is increasing in γ while FH(ŵH) is decreasing in γ—i.e., the spread in consent

shares under the auxiliary solution is increasing in the degree of bond heterogeneity.

Optimal Two-Limb Offer. The optimal offers under two-limb aggregation coincide with

the auxiliary solution as long as FH(ŵH) ≥ τ s2. Since FH(ŵH) is increasing in λ and decreasing

in γ, the inequality is more likely to hold for high values of λ and low values of γ. Indeed, one

can show that FH(ŵH) ≥ τ s2

– if γ ≤ (1− τ s2)/(1− τ a2 ) ≡ γX , for all values of λ;

– if λ ≥ (1− τ a2 )/(1− τ s2) ≡ λ ∈ (0, 1), for all values of γ;

– in the remainder of the parameter space for γ sufficiently small or λ sufficiently large.22

Conversely, the consent requirement on the expensive bond H is binding when there is suffi-

cient heterogeneity across the two bonds (γ > γX) and the relative size of bond H is small.

Analytical expressions for the optimal two-limb offers in this case are provided in the appendix.

Optimal Voting Procedure. When parameter values are such that FH(ŵH) ≥ τ s2, two-

limb aggregation is optimal since the series-by-series constraints have no bite. The other

sufficient condition for two-limb optimality is that the optimal uniform offer u∗ satisfies the

series-by-series constraints (i.e., FH(u
∗) ≥ τ s2), in which case the unique advantage of single-

limb aggregation is worthless. In the appendix, relying on Lemma 2, we show that this condi-

21The analytical derivations for this section are provided in Appendix A.3.
22An explicit condition of the form λ ≥ ℓX(γ) for γ > γX is provided in the appendix, see Remark A-3.

15



tion holds if the heterogeneity parameter γ is below some threshold value γU , or alternatively

if λ is sufficiently large.23

Exploiting Proposition 3 allows us to establish instead a sufficient condition for single-limb

optimality. One can show that the premise of the proposition is satisfied for sufficiently high

values of γ. Then, single-limb voting is optimal for λ sufficiently close to zero when τ1 = τ a2 .

If instead τ1 > τ a2 , as long as τ1 − τ a2 is not too large, single-limb aggregation is optimal when

the relative size λ of bond H is close to the value λ̃—given by (A.21) in the appendix—such

that the auxiliary solution would require giving the same recovery value to the two bonds,

with a consent share for bond H below τ s2.

When none of the sufficient conditions holds, one can still compare the restructuring costs

across the two aggregation procedures. Under two-limb voting, the constraint on bond H

must then be binding, and the restructuring cost is given by

C2 = λϕH log

(
1

ζs2

)
+ (1− λ)ϕL log

(
1− λ

ζa2 − λζs2

)
,

where ζj2 ≡ 1− τ j2 for j ∈ {s, a}. Noting that the optimal single-limb offer u∗ is such that

F (u∗) ≡ λFH(u
∗) + (1− λ)FL(u

∗) = 1− λe−u∗/ϕH − (1− λ)e−u∗/ϕL = τ1,

one can see that single-limb dominates if and only if F (C2) > τ1. We thus obtain a necessary

and sufficient condition for single-limb optimality in terms of parameter values, namely:

λ (ζs2)
λ

(
ζa2 − λζs2
1− λ

) 1−λ
γ

+ (1− λ) (ζs2)
λγ

(
ζa2 − λζs2
1− λ

)1−λ

< 1− τ1. (23)

3.2 Numerical Illustration

For the sake of illustration, we first assume that τ1 = τ a2 = 2/3 and τ s2 = 1/2, and we set

the distributional parameters to ϕH = 0.7 and ϕL = 0.2 (i.e., the average reservation values

for the two bonds are 70 and 20 cents on the dollar, respectively). Figure 1 depicts optimal

offers (left panel) and consent shares (right panel) under the two aggregation methods as

a function of the relative size λ of the expensive bond. Optimal offers and consent shares

under two-limb aggregation are represented as dash-dotted blue and dashed red lines for the

cheap and expensive bond, respectively, whereas the optimal offer and consent shares under

single-limb aggregation are represented by black lines. The shaded colored lines represent the

offer and consent shares under the auxiliary solution when it is not feasible. Consider the

two-limb modification method first. When λ is large enough, the auxiliary solution is feasible,

both exchange offers are increasing in λ and consent shares are larger than the series-by-series

23The appendix gives an explicit condition of the form λ ≥ ℓU (γ) ∈ (0, 1) for γ > γU .

16



threshold. When instead λ is low, the series-by-series constraint for the expensive bond binds:

wH is flat, the consent share for bond H equals τ s2, and the government sets wL < ŵL, so as

to satisfy the aggregate consent requirement. Under single-limb voting, the optimal uniform

offer and the associated consent shares are smoothly increasing functions of λ.

0 1λ
F−1
L (τa

2 )

F−1
H (τa

2 )

wH

wL

Restructuring offers

C2

C1 = u∗

0 1λ
0.27

τ s
2

τa
2

1

FH(wH)

FL(wL)

FH(u∗)

FL(u∗)

∑
i λiFi(u

∗)

Consent shares

Figure 1: Optimal Restructuring Offers and Consent Shares.

The left panel of Figure 1 also displays the total restructuring cost as a function of λ for

each of the two modification methods: single-limb aggregation is represented by the dotted

black line (coinciding with u∗), and the cost under the two-limb procedure is depicted by the

solid orange line. The figure shows that the two-limb method dominates for sufficiently high

values of λ, while single-limb aggregation dominates when the share of the expensive bond is

low, consistent with the rest of our analysis.

Finally, Figure 2 represents regions of the parameter space in which either of the two

aggregation methods dominates, when τ1 = τ a2 = 2/3 (left panel) and when the thresholds are

set as in the standard ICMA CACs, with τ1 = 3/4 and τ a2 = 2/3 (right panel). The optimal

restructuring method is characterized as a function of the relative size λ of the expensive bond

and the degree of heterogeneity across bonds, captured on the y-axis by log(γ) > 0. The figure

depicts as (colored) dashed, dotted, or dash-dotted lines various analytical objects introduced

above, related to sufficient conditions for two-limb or single-limb optimality. The solid (black)

boundary is based instead on the necessary and sufficient condition (23) and illustrates the

fact that the single-limb procedure is optimal in circumstances when the heterogeneity across

bonds is substantial and the relative size of the expensive bond is not too large.24 Naturally,

the region where single-limb voting dominates shrinks when τ1 increases. The figure also

illustrates the fact that when τ1 > τ a2 , two-limb voting always dominates in the neighborhood

of λ = 0, in line with the general observation formulated in (19).

24Figure B.4 in Appendix B generalizes this result to an environment with stochastic consent shares.
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Figure 2: Optimal Voting Rule as a function of Relative Size (λ) and Bond Heterogeneity (γ).

4 CACs and Vultures

This section builds on the two-bond framework to analyze how the design of CACs and their

optimal use by the government affect the potential entry of vulture funds who, by taking large

positions, may be able to block bond restructurings.

4.1 Setup

We consider an extension of the setup of Section 2 in which, prior to the restructuring episode,

a vulture fund may potentially acquire bonds H and L from the continua of heterogeneous

investors who hold them. We denote by µi the share of bond i acquired by the fund, and we

denote by qi the price paid by the fund per unit of face value. We further assume that the

fund needs to pay a fixed transaction cost εi to enter the market for bond i, which can be

interpreted as the search cost of finding a counterparty.

Blocking Positions. In a restructuring, holding a sufficiently large position effectively allows

the fund to prevent the triggering of CACs. We assume that the fund systematically opposes

a restructuring when it is able to do so, and that it derives hi per unit of face value held from

blocking the restructuring of bond i.25 In particular, single-limb aggregation can be blocked

if
∑

i λiµi > 1 − τ1, and the fund can block the restructuring of bond i under the two-limb

procedure when µi > 1− τ s2.

Bond Market Prices. The price qi at which the fund may acquire a position in bond i

naturally depends on the payoff that atomistic investors expect at the subsequent restructuring

25We assume that if CACs are not triggered for bond i, then the bond is left unrestructured. That is, CACs
thresholds coincide with minimum participation thresholds.

18



stage. If the market understands that the fund will be unable to prevent the restructuring of

bond i, the price qi coincides with the government’s optimal restructuring offer wi. If instead

the fund’s acquired positions later enable it to block the restructuring of bond i, investors

would ultimately be left with their own reservation values for this bond. In that case, each

investor is thus willing to sell as long as the market price qi is above her reservation value,

implying that the fund can acquire a share µi of bond i at a cost of F−1
i (µi) per unit of face

value.

Cost of Holdout Strategies. The minimum cost at which the fund can acquire a blocking

position in the two bonds under either aggregation method is given by26

κ2 ≡ inf
{µi}

∑

i

1{µi>0}
(
λiµiF

−1
i (µi) + εi

)
s.t.

∑

i

λiµi > 1− τ1.

Likewise, the minimum cost at which the fund may be able to prevent the restructuring of

bond i via two-limb aggregation is

κi ≡ λi(1− τ s2)F
−1
i (1− τ s2) + εi, i = H,L.

We assume, without loss of generality, that bond L is the cheapest to block, i.e., κL < κH .
27

Limited Financial Resources. We assume that the fund has limited resources relative to

the size of the outstanding bond series, which restricts its potential ambitions as a holdout.

Namely, we assume that the fund’s resources e are such that

κL < e < min{κH , κ2}.

We thus focus on the case where the only holdout strategy that the fund may consider is to

acquire a blocking position in one bond (namely, bond L) that would prevent the activation

of CACs for this bond under two-limb aggregation.

4.2 Equilibrium

In equilibrium, the outcome of the early stage in which the fund decides on (µH , µL) must be

consistent with the outcome of the restructuring stage. To start with, it is straightforward to

see that, under the previously stated assumptions, the fund would set µH = 0, i.e., it would

refrain entirely from entering the market for bond H. Indeed, since any position that the

fund may feasibly acquire in that bond would be non-blocking, the price qH would be equal

26Because τa2 ≤ τ1, the cost of blocking both bonds under two-limb aggregation is (at least weakly) larger
than under single limb.

27Under the maintained assumption (6), we know that F−1
L (1− τ s2) < F−1

H (1− τ s2). However, the blocking
costs also depend on the size of the bonds (λi) and entry costs (εi).
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to the restructuring payout wH , and the fixed entry cost would thus be enough to keep the

fund at bay. By the same logic, one can see that any position µL > 0 that is non-blocking is

suboptimal. The only remaining question, therefore, is: would the fund decide to acquire a

blocking position in bond L or stay away altogether?

Two-Limb-Only CACs. It is useful to first consider the case where CACs only allow for

two-limb aggregation. If the fund contemplates acquiring a blocking position in bond L, the

optimal blocking share µ∗
L is given by the solution to the constrained problem

B ≡ sup
µL>1−τ s2

λLµL

(
hL − F−1

L (µL)
)
− εL s.t. λLµLF

−1
L (µL) + εL ≤ e. (24)

As long as B > 0, it is optimal for the fund to purchase a share µ∗
L of bond L and then block

the restructuring of the bond in order to get the holdout payoff hL, with net benefit B.

Enhanced CACs. Suppose now that the government can choose between the two aggregation

methods. How would it respond if the fund builds a blocking position in bond L? Under the

two-limb method, bond L would have to be left unrestructured. Instead, under single limb,

the government would pick the uniform offer u∗ that attracts an aggregate consent share τ1.

As long as the cost of leaving one bond unrestructured is sufficiently high,28 the government

would optimally respond using single-limb aggregation, thus defeating any attempt to block

bond L. Hence, the fund would optimally refrain from entering, and the government would

choose its restructuring approach according to the logic outlined in Section 2.

4.3 Vulture Entry and the Design of CACs

The analysis of this section reveals that, although single-limb aggregation may not be used

in equilibrium under enhanced CACs, it does serve as an off-equilibrium threat that deters

potential holdouts from acquiring a blocking position in a bond. Indeed, in the equilibrium

under enhanced CACs described above, the vulture fund optimally decides to stay at bay. Off

equilibrium, the fund considers building a blocking position µL > 1 − τ s2 at a cost qL = u∗

per unit of face value, where the market price qL reflects the (correct) expectation that the

government would defeat the holdout attempt using single-limb aggregation with uniform

offer u∗—so that the fund would ultimately make a loss due to the fixed entry cost. Hence

in the restructuring, the government ends up selecting the aggregation method according to

the relative size of the bonds and the cross-bond heterogeneity in the reservation values of

non-vulture investors, as illustrated in Section 3. Unless a relatively small bond is held by

highly demanding creditors, the government would thus be using two-limb aggregation in

equilibrium. However, if the option to use single-limb aggregation were to be removed, the

28When unable to restructure a bond via the triggering of CACs, governments typically end up paying large
settlement amounts to the holdouts. Such settlement payments are captured by hi in our setup.
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equilibrium outcome would be dramatically different: the vulture fund would optimally decide

to acquire a blocking position in one bond, making its restructuring impossible or more costly.

5 Endogenous Sorting

This section provides an explicit treatment of the heterogeneity within and across bonds, going

beyond the reduced-form formulation of Section 2. We embed the government’s restructuring

problem in a continuous-time infinite horizon model in which bonds differ in their maturities,

and the creditor base of each bond is determined endogenously in equilibrium.

5.1 Stationary Environment

Investor Heterogeneity. The market is populated by a continuum of risk-neutral investors

who differ in their discount rates r, distributed according to the cumulative distribution func-

tion G on R = [rmin, rmax].

Bonds. There are two bonds S and L. The face value of bond i ∈ {S, L} decays exponentially

at rate δi. We shall assume that δS > δL, hence bonds S and L can be thought of as short-

term and long-term bonds, respectively. The government may default on both bonds, and the

arrival time of default is exponentially distributed with parameter η. While there is no default,

bond i continuously pays at coupon rate ci. Upon occurrence of a default, bondholders receive

a bond-specific recovery rate wi per unit of face value, as further specified below.29 We assume

that the government continuously issues new bonds, so that the relative face values of short-

and long-term bonds remain constant over time. We denote by λS ∈ (0, 1) and λL = 1 − λS

the relative face values of the two bonds. Moreover, we denote by ∆q ≡ qS − qL the price

differential (per unit of face value) between the two bonds.

Restructuring. Upon default, the government offers recovery rates w = (wS, wL) and selects

one of the contractually defined modification methods to implement the restructuring. We

denote by hi(r) the reservation value of an investor with discount rate r holding bond i, the

exact specification of which depends on the details of the microfoundation. In what follows,

we use the functional form

hi(r) =
ci

r + δi + χ
, χ ≥ 0.

Intuitively, the parameter χ captures the extent to which the investor’s reservation value is

discounted relative to her subjective valuation ci/(r + δi) of the bond’s promised cashflow

29Note that the implied loss 1 − wi is expressed as a fraction of the bonds’ face value at the time of the
restructuring, which corresponds to the notion of “market haircut” as defined in Cruces and Trebesch (2013).

21



stream. An investor accepts the government’s restructuring offer wi for bond i if and only if

r ≥ ci
wi

− (δi + χ).

Sorting Stage. Prior to the occurrence of a restructuring with anticipated recovery rate ωi,

the valuation of bond i (per unit of face value) by investor r is given by

Qi(r, wi) =
ci + η wi

r + δi + η
.

Given anticipated recovery rates w, investors choose which bond to hold based on their sub-

jective valuations and the price differential ∆q. The set of investors sorting into bond S is

RS(∆q,w) =
{
r ∈ R : QS(r, wS)−QL(r, wL) ≥ ∆q

}
,

while investors with discount rates in RL(∆q,w) = R\RS(∆q,w) hold bond L. We proceed

under the assumption that investors take a unit position in either bond.

5.2 Equilibrium Definition

Given a partition
(
RS,RL

)
in the sorting stage, the mass of investors who hold bond i is

µi =

∫

r∈Ri

dG(r),

and the endogenous CDF of reservation values for bond i is

Fi(w) =
1

µi

∫

r∈Ri

1{
hi(r)≤w

}dG(r). (25)

In the restructuring stage, the government takes these distributions as given when choosing

the recovery rates and modification method. We now define the notion of equilibrium in this

two-stage stationary setting.

Definition 1. Given the distribution G of discount rates on R, bond characteristics (cS, δS)

and (cL, δL), relative face values (λS, λL), default arrival rate η, and discount parameter χ, an

equilibrium consists of

(i) a price differential ∆q∗ and a partition
(
RS,RL

)
,

(ii) a modification method and a pair of recovery rates w∗,

such that
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1. the government chooses the modification method and restructuring offers optimally given

the implied distributions FS and FL given by (25);

2. investors optimally choose which bond to hold: Ri = Ri(∆q∗,w∗);

3. the market clears for each bond, µi = λi.

5.3 Example

We now discuss and illustrate one type of equilibrium that arises in this setting. Assuming

that G is uniform on R = [0, 0.55], we set (δL, δS) = (0.05, 0.25) for the decay rates, and

η = χ = 0.4 for the default intensity and discount parameter. As a baseline, we fix the

relative size of the long-term bond at λL = 0.37. We fix the coupon rate of the short-term

bond at cS = E(r) + δS,
30 and we set cL = E(r) + δL + ϵL, where the extra parameter ϵL is

set at zero in the baseline, but later takes value in [−0.04, 0.04] to perform one comparative

static exercise. The voting thresholds are set at τ s2 = 1/2 and τ a2 = τ1 = 2/3, providing for a

clean comparison of aggregation methods.

For such parameters, one can construct a threshold-type equilibrium in which

RL =
[
rmin, r̂

]
and RS =

[
r̂, rmax

]
.

In this equilibrium, long-term bonds are held by the more patient investors, with discount

rates below the threshold level r̂. Market clearing requires that

G(r̂) = λL

and the price differential is pinned down as ∆q∗ = QS

(
r̂, w∗

S

)
− QL

(
r̂, w∗

L

)
, where w∗

i is

the equilibrium offer to bond i. The investors’ reservation values for bonds L and S in the

restructuring stage lie in the intervals

VL =
[
hL(r̂), hL(rmin)

]
and VS =

[
hS(rmax), hS(r̂)

]
.

Moreover, defining

aL =
λLrmax + (1− λL)rmin + δL + χ

λL(rmax − rmin)
, bL =

cL
λL(rmax − rmin)

,

aS =
rmax + δS + χ

λS(rmax − rmin)
, bS =

cS
λS(rmax − rmin)

,

(26)

30This normalization implies that, absent default risk, the average investor would value the bond at par.
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one can write Vi = [bi/ai, bi/(ai − 1)], and the reservation value CDFs are given by

Fi(w) = ai − bi/w, for w ∈ Vi. (27)

Thanks to the simple functional form taken by the CDFs, one can solve for the government’s

optimal restructuring offers under each aggregation method in closed form. The derivations

follow the same logic as in Section 2 and are relegated to Appendix A.4.

Figure 3 illustrates the aforementioned equilibrium objects graphically. The left panel plots

the bond valuation functions Qi(. , w
∗
i ) and the threshold value r̂ in the sorting stage. The

center panel illustrates the reservation value functions hi(.), using solid lines in the regions

of R where they are relevant, and dotted lines otherwise. The right panel illustrates the

reservation value CDFs, revealing that bond L (in red) is the relatively “expensive” one in

this example. The consent shares implied by the optimal two-limb and single-limb offers are

denoted with circle and diamond markers, respectively. In the baseline parametrization, the

auxiliary solution is not feasible (the optimal two-limb offer hence inducing a consent share

for bond L equal to the series-by-series threshold) and the single-limb method dominates.
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Figure 3: Equilibrium Bond Valuations and Price Differential, Reservation Values, and CDFs.

5.4 Comparative Statics

We now revisit how the optimal modification method and restructuring offers depend on the

relative face value of the bonds and on the heterogeneity across reservation value distributions.

In Section 3, these two aspects were independently governed by the parameters λ and γ,

respectively. Now instead the degree of heterogeneity in the reservation value distributions is

endogenous and partly depends on the relative bond size. Yet the insights from Section 3 are

useful to interpret the comparative statics obtained in the model with sorting.

24



Cross-Bond Heterogeneity: the Role of Coupon Rates. We start by considering the

effect of a change in the coupon rate of the long-term bond, holding everything else fixed. As

captured by (26)-(27), an increase in cL shifts FL down and to the right, while leaving FS

unchanged. Hence, relative to the baseline case depicted in the right panel of Figure 3, the

heterogeneity in equilibrium reservation value distributions increases across the two bonds.

Figure 4 illustrates the equilibrium restructuring outcomes as a function of the change ϵL

in the coupon rate cL relative to the baseline. The left panel plots the consent shares implied

by the optimal single-limb offer (in black) and by the optimal two-limb offers (in dashed blue

and dotted red for the short- and long-term bond, respectively), while the shaded colored lines

represent the consent shares induced by the auxiliary solution when it is not feasible. The

right panel plots the difference between the total restructuring cost under the two-limb and

single-limb procedures. For low values of ϵL, the equilibrium reservation value distributions are

quite similar, as can be seen from the fact that FL(u
∗) and FS(u

∗) are close to each other, and

the optimal two-limb solution coincides with that of the auxiliary problem—thus dominating

the single-limb solution. For larger values of ϵL, the auxiliary solution stops being feasible

as the series-by-series constraint for bond L starts binding under two-limb aggregation, and

the single-limb method becomes optimal. Hence, as in Sections 2 and 3, single-limb becomes

more attractive when the reservation value distributions are (locally) more heterogeneous.
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Figure 4: Comparative Static with Respect to Heterogeneity Driven by a Change in cL.

Cross-Bond Heterogeneity: the Role of Relative Size. Next, we consider the effect of

a change in the relative size λL of the long-term bond. Such a change affects the equilibrium

outcome through two distinct channels: the pure size effect already discussed in Section 2,

and a new sorting channel driven by the endogenous change in reservation value distributions.

The first channel through which a change in relative bond size affects the restructuring

outcome is the one illustrated in Figure 1: when the share (λL) of the “expensive” bond
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increases, both auxiliary offers increase. Locally around the baseline, the offer ŵL to bond L

is never feasible, as it implies FL(ŵL) < τ s2; however, as λL increases and FL(ŵL) approaches

τ s2, the two-limb method becomes cheaper than single limb, because the cost of the series-by-

series constraints becomes smaller than that of the uniform applicability constraint. Through

this channel, an increase in λL is therefore favorable to the use of the two-limb procedure.

The second effect is driven by the change in reservation value distributions arising from a

change in the relative supply of bonds. As can be seen from (26)–(27), a higher share λL of the

long-term bond lowers both the upper bound of VS and the lower bound of VL, while it does not

affect the other bounds: FS becomes steeper, FL flatter, and both distributions move leftwards.

Figure 5 depicts with thin solid lines the partial effect driven by this “sorting channel”, along

with the total impact of λL on restructuring outcomes—depicted with thick dotted lines. The

left panel plots the optimal offers under single-limb and two-limb aggregation, together with

the auxiliary offers (shaded); the middle panel displays the corresponding consent shares; and

the right panel depicts the restructuring cost differential.31
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Figure 5: Comparative Static with Respect to λL: Sorting Channel and Total Effect.

Via the sorting channel, an increase in λL causes an increase in the auxiliary offer for

bond S (in blue) and a decrease for bond L (in red), due to the change in the slopes of

the reservation value distributions.32 Hence the shaded solid lines representing ŵS and ŵL

in the left panel have opposite slopes, and the corresponding consent shares in the center

panel diverge, as in the case of an increase in heterogeneity brought about by an increase

in cL (Figure 4). For sufficiently high values of λL the auxiliary solution violates the series-

by-series constraint for bond L, and the single-limb method becomes cheaper, as it enables

the government to obtain a low consent share in the expensive bond. In this example, the

pure size effect is dwarfed by the sorting channel, so the total effect closely resembles the

31We omit the legends to make the figure less dense; the color coding is as in Figure 4. In the middle panel,
the consent shares depicted in black that are located below (resp. above) τa2 correspond to bond L (resp. S).

32See Section 1.2 for a characterization of the the auxiliary solution in terms of the slopes of the CDFs.
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latter: a higher share of the long-term bond makes the reservation value distributions more

heterogeneous, and the single-limb method more attractive.

Impact of CACs on Bond Prices. Finally, we discuss how the design of CACs can affect

bond valuations, focusing on the equilibrium price differential (∆q∗) between the short- and

long-term bonds. In our setting, the specification of CACs affects the price differential through

its impact on the equilibrium offers in the restructuring stage.
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Figure 6: Bond Price Differential as Function of CACs Type, Relative Size, and Default Rate.

Figure 6 depicts ∆q∗ as a function of the relative size λL of the long-term bond under

either two-limb-only CACs (solid orange), single-limb-only CACs (dotted black), or enhanced

CACs (thick dashed green). The two panels are obtained for different values of the likelihood

of default, η. Under any type of CACs, the relative price of the short-term bond is increasing

in the relative size of the long-term bond and in the arrival rate of default. Moreover, in this

example, the price differential ∆q∗ under single-limb CACs is always higher than under two-

limb CACs. Hence, the bond price differential under enhanced CACs has a discontinuous jump

upwards at the cutoff value of λL above which single-limb aggregation dominates. Naturally,

as can be seen by comparing the two panels, the design of CACs has a greater price impact

when the probability of a future restructuring is larger.

6 Conclusion

CACs constitute a key pillar of the sovereign debt architecture and determine the fate of

trillions of public debt securities worldwide, should they be subject to a restructuring. This

paper analyzes the optimal use of enhanced CACs by a sovereign seeking to restructure multi-

ple bond series at minimal cost. Our analysis clarifies how the optimal restructuring approach

depends on the heterogeneity across bonds and their relative size, as well as on the various
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voting thresholds. In particular, our analysis reveals that resorting to the single-limb pro-

cedure introduced in the last-generation ICMA CACs is optimal only under quite special

circumstances, namely, when one bond is held by investors who are particularly reluctant to

take a haircut and this bond is relatively small in the restructuring pool.

Our analysis also clarifies how the design of CACs and the anticipation of their optimal

use affects the bonds’ creditor bases and the distribution of investors within and across bonds.

In particular, we show that single-limb aggregation can serve as an off-equilibrium deterrent

in the presence of vulture funds, even though it may not be used in equilibrium.

Although most of our analysis is developed in a two-bond setup, it could be extended to N

bonds, possibly allowing for interlocking debt stocks featuring different CACs specifications.

The optimal use of sub-aggregation could be analyzed in such a setting.
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A Technical Appendix

This appendix contains the proofs and derivations of all the results stated in the main text.

A.1 Proof of Proposition 1

Define the set of offers that satisfy the aggregate constraint

A(τ) =
{
w :

∑

i∈B
λiFi(wi) ≥ τ

}
,

the set of offers that satisfy the series-by-series constraints

S(τ) =
{
w : Fi(wi) ≥ τ for all i ∈ B

}
,

and the set of offers that satisfy the uniform applicability condition

U =
{
w : wi = wj for all i, j ∈ B

}
.

The restructuring cost associated with the optimal single-limb offer is

C1 ≡ min
w∈A(τ1)∩U

λ.w =: λ.w∗, (A.1)

while the restructuring cost associated with the optimal two-limb offer is

C2 ≡ min
w∈A(τa2 )∩S(τ s2)

λ.w =: λ.w∗∗, (A.2)

and the auxiliary problem can be formulated as

Ĉ ≡ min
w∈A(τa2 )

λ.w =: λ.ŵ.

Noting that A(τ1) ⊆ A(τ a2 ) since τ a2 ≤ τ1, condition (i) follows from the fact that

w∗ ∈ S(τ s2) ⇒ C1 = min
w∈A(τ1)∩U∩S(τ s2)

λ.w ≥ C2, (A.3)

while condition (ii) follows from the observation that

ŵ ∈ S(τ s2) ⇒ w∗∗ = ŵ and C2 = Ĉ ≤ C1. (A.4)

Furthermore, (A.3) and (A.4) involve a strict inequality C2 < C1 if w∗∗ /∈ U .
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A.2 Proofs and Derivations for Section 2

Proof of Lemma 1. The properties of u∗ = u(λ, τ1) stated in the lemma follow immediately

from the implicit definition (7), using the stochastic ordering assumption (6).

Proof of Lemma 2. Using Lemma 1, it is immediate to see that if F−1
H (τ s2) ≤ F−1

L (τ1), then

u∗ ≥ F−1
H (τ s2) for any value of λ ∈ (0, 1). If instead F−1

L (τ1) < F−1
H (τ s2), there exists a unique

λ† ∈ (0, 1) such that u(λ†, τ1) = F−1
H (τ s2), and u∗ = u(λ, τ1) ≥ F−1

H (τ s2) for all λ ≥ λ†.

Remark A-1. When considering two-limb aggregation in the two-bond case, the set W of

possible offers wL to the holders of bond L such that the aggregate consent requirement (10)

can be met for some value of wH is defined as follows

W =





R+, if λ ≥ τ a2(
F−1
L

(
τa2−λ

1−λ

)
,∞
)
, if 1− τ a2 ≤ λ < τ a2(

F−1
L

(
τa2−λ

1−λ

)
, F−1

L

(
τa2
1−λ

)]
, if λ < 1− τ a2





. (A.5)

Remark A-2. When the auxiliary solution satisfies (15), taking into account the fact that

the function g defined by (12) depends on λ, one can show that

dŵL

dλ
=

(
f ′
L(ŵL)

f ′
H(ŵH)

+
1− λ

λ

)−1
FL(ŵL)− τ a2
λ2fL(ŵL)

,

while

dŵH

dλ
=

(
1 +

1− λ

λ

f ′
H(ŵH)

f ′
L(ŵL)

)−1
FL(ŵL)− τ a2
λ2fL(ŵL)

.

In particular, in the special case where fH and fL are decreasing, one can see that whenever

the auxiliary solution is such that FL(ŵL) > τ a2 (or equivalently, in view of Remark 1, such

that the consent share of the cheap bond is higher than for the expensive bond), a marginal

increase in the relative size λ of bond H is accompanied by an improvement in the exchange

offers made to both bonds.

Proof of Lemma 3. Define J(w) = λg(w) + (1 − λ)w. Differentiating with respect to w,

one can show that the sign of J ′(w) coincides with the sign of fH
(
g(w)

)
− fL(w). The second

inequality in (18) is equivalent to the requirement J ′(w) < 0 for w = F−1
L (τ s2), while the

second inequality in (17) is equivalent to J ′(w) > 0 where w is such that g(w) = F−1
H (τ s2).

Proof of Proposition 2. This is an immediate corollary of Proposition1: indeed Lemmas 2

and 3 provide conditions such that (i) and (ii) hold, respectively.
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Proof of Proposition 3. We prove parts (i) and (ii) of the proposition separately.

Proof of Part (i). Throughout this part, we denote by C1(λ) and C2(λ) the restructuring

cost under single-limb and two-limb voting, and we assume that the aggregate thresholds are

identical under the two modification methods, namely, τ1 = τ a2 = τ a. It follows immediately

that limλ↓0C1(λ) = limλ↓0C2(λ) = F−1
L (τ a). In the remainder of the proof, we focus on the

slope of the functions C1 and C2 for λ close to zero. Noting that C1(λ) = u(λ, τ a), we apply

the implicit function theorem to obtain

dC1(λ)

dλ
=

∂u(λ, τ a)

∂λ
=

FL(u
∗)− FH(u

∗)

λfH(u∗) + (1− λ)fL(u∗)
> 0.

In particular

C ′
1(0) = lim

λ↓0

dC1(λ)

dλ
=

τ a − FH ◦ F−1
L (τ a)

fL ◦ F−1
L (τ a)

. (A.6)

Next, we analyze the restructuring cost under two-limb voting, C2(λ). First, we establish that

under the assumptions of Proposition 3 and for λ small, the individual consent requirement

on bond H is binding. To see this, we start from the identity

fL
(
F−1
L (τ a)

)
− fH

(
F−1
H (τ s2)

)
=
[
fL
(
F−1
L (τ a)

)
− fH

(
F−1
L (τ a)

)]
+
[
fH
(
F−1
L (τ a)

)
− fH

(
F−1
H (τ s2)

)]
.

By assumption, F−1
L (τ a) < w̃ and fL(w) > fH(w) for all w < w̃, implying that the first term

is strictly positive. Noting that the second term is also strictly positive under the assumptions

of the proposition, we thus conclude that

fL
(
F−1
L (τ a)

)
> fH

(
F−1
H (τ s2)

)
. (A.7)

In turn, the inequality (A.7) implies that (17) is violated for λ close to zero. Hence for λ close

to zero, the two-limb offer is constrained by the individual consent requirement on bond H.

Therefore in this neighborhood

C2(λ) = λF−1
H (τ s2) + (1− λ)F−1

L

(
τ a − λτ s2
1− λ

)
,

and

dC2(λ)

dλ
= F−1

H (τ s2)− F−1
L

(
τ a − λτ s2
1− λ

)
+

τ a2 − τ s2
1− λ

[
fL ◦ F−1

L

(
τ a − λτ s2
1− λ

)]−1

.
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In particular,

C ′
2(0) = lim

λ↓0

dC2(λ)

dλ
= F−1

H (τ s2)− F−1
L (τ a) +

τ a − τ s2
fL ◦ F−1

L (τ a)
. (A.8)

Combining (A.6) and (A.8), we obtain that

C ′
1(0) < C ′

2(0) ⇔
(
F−1
H (τ s2)− F−1

L (τ a)
)
fL
(
F−1
L (τ a)

)
> τ s2 − FH

(
F−1
L (τ a)

)
.

To show that this inequality holds, we note that fH being strictly decreasing implies that FH

is strictly concave, which in turn implies that

(
F−1
H (τ s2)− F−1

L (τ a)
)
fH
(
F−1
L (τ a)

)
> FH

(
F−1
H (τ s2)

)
− FH

(
F−1
L (τ a)

)
= τ s2 − FH

(
F−1
L (τ a)

)
,

and the desired inequality follows from the fact that fL(wL) > fH(wL) since wL < w̃. By

continuity, we conclude that C1 < C2 for λ close to 0.

Proof of Part (ii). Noting that F−1
H (τ s2) < F−1

H (τ1), we know by assumption that the location of

the crossing point w̃ is such that w̃ ∈
(
F−1
L (τ1), F

−1
H (τ1)

)
. In view of Lemma 1, the intermediate

value theorem implies that there exists λ̃ ∈ (0, 1) such that u(λ̃, τ1) = w̃. By construction, the

single-limb uniform offer u∗ is equal to w̃ for λ = λ̃. Moreover, λ̃FH(w̃) + (1− λ̃)FL(w̃) = τ1

is equivalent to w̃ = g(w̃; λ̃, τ1), where g(w;λ, τ) denotes the unique value of wH such that

λFH(wH) + (1− λ)FL(w) = τ . Therefore we can write

fL(w̃) = fH(w̃) = fH(g(w̃; λ̃, τ1)). (A.9)

Setting λ = λ̃, we next consider the restructuring cost under two-limb voting for τ a2 = τ1.

The assumption that the densities are decreasing guarantees convexity of the corresponding

auxiliary problem, and (A.9) implies that the auxiliary solution is given by ŵ = (w̃, w̃).

Yet since FH(w̃) < τ s2 by assumption, the auxiliary solution violates the individual consent

requirement on bond H, implying that C2 > w̃. Therefore, for λ = λ̃ and τ a2 = τ1, we have

C1 = w̃ < C2 and by continuity, we conclude that the single-limb method is optimal when the

parameters (λ, τ a2 ) are close to (λ̃, τ1).

A.3 Derivations and Additional Results for Section 3

With a view towards applying some of the results derived in Section 2, we first note that

under the parametric specification (20), the two densities are strictly decreasing, with

fi(w) =
1

ϕi

e
− w

ϕi .
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Moreover, the two densities cross at a single point w̃ given by

w̃ =
γ log γ

γ − 1
ϕL. (A.10)

Holding ϕL fixed, w̃ is increasing in the heterogeneity parameter γ. We also note that

F−1
L (τ1) < F−1

H (τ s2) ⇔ γ >
log(1− τ1)

log(1− τ s2)
≡ γU (> 1). (A.11)

Auxiliary Solution. Under the exponential specification, condition (14) for strict convexity

of the auxiliary problem is satisfied and the mapping g that captures the aggregate consent

requirement becomes

g(wL) = −ϕH log

(
1− τ a2 − (1− λ)e−wL/ϕL)

λ

)
, wL ∈ W .

The first-order condition (15) to the auxiliary problem gives33

ŵL = ϕL log

(
1 + λ(γ − 1)

1− τ a2

)
, (A.12)

and the induced consent share for bond L is given by (21). Since FL(ŵH) > τ a2 , it follows

from Remark 1 that FH(ŵH) < τ a2 . Hence, in the context of this parametric example, only

the individual constraint on bond H may ever be binding. We compute

ŵH = g(ŵL) = ϕH log

(
1 + λ(γ − 1)

γ(1− τ a2 )

)
, (A.13)

and the consent share for bond H is given by (22). The auxiliary offers ŵL and ŵH , and the

corresponding consent shares, are increasing in λ—in line with the more general result stated

in Remark A-2 in Appendix A.2. Moreover, one can check that FL(ŵL) is increasing in γ

while FH(ŵH) is decreasing in γ—that is, the spread in consent shares under the auxiliary

solution is increasing in the degree of bond heterogeneity.

Optimal Two-Limb Offer. The optimal offers under two-limb voting coincide with the

auxiliary solution (A.12)–(A.13) as long as FH(ŵH) ≥ τ s2. Using (22), one can see that the

33The solution to the auxiliary problem is pinned down by this condition as long as the problem’s solution
is interior. In view of (A.5), one can see that the auxiliary solution is non-interior if and only if λ < 1 − τa2
and γ > (1 − λ)/(1 − λ − τa2 ), in which case ŵL = supW and the consent share for bond H is zero, thus
violating the individual constraint for this bond. Hence, whenever the optimal two-limb offers coincide with
the auxiliary solution, the recovery values on the two bonds are given by (A.12) and (A.13).
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latter inequality is equivalent to

1 + λ (γ − 1)

γ
≥ 1− τ a2

1− τ s2
. (A.14)

For given values of the voting thresholds τ a2 and τ s2, one can characterize more explicitly the set

of values for λ and γ such that (A.14) holds. Since FH(ŵH) is increasing in λ and decreasing

in γ, the inequality is more likely to hold for high values of λ and low values of γ. Indeed, it

is easy to see that (A.14) holds

– if γ ≤ (1− τ s2)/(1− τ a2 ) ≡ γX , for all values of λ;

– if λ ≥ (1− τ a2 )/(1− τ s2) ≡ λ ∈ (0, 1), for all values of γ;

– in the remainder of the parameter space for γ sufficiently small or λ sufficiently large

(see Remark A-3 below for an explicit condition).

Conversely, the consent requirement on the expensive bond H is binding when there is suffi-

cient heterogeneity across the two bonds (γ > γX) and the relative size of bond H is small.

For such parameter values, the optimal two-limb offers are

wH = F−1
H (τ s2) = ϕH log

(
1

1− τ s2

)
, (A.15)

wL = F−1
L

(
τ a2 − λτ s2
1− λ

)
= ϕL log

(
1− λ

1− τ a2 − λ(1− τ s2)

)
. (A.16)

Remark A-3. When γ > γX = λ−1, the condition on λ such that (A.14) holds is

λ ≥ λγ − 1

γ − 1
≡ ℓX(γ) ∈ (0, 1), (A.17)

where ℓX is increasing in γ and converges to λ in the limit as γ goes to infinity. When λ < λ,

the condition on γ can be expressed as

γ ≤ 1− λ

λ− λ
, (A.18)

where the right-hand side is increasing in λ, starting at γX for λ = 0 and going to infinity in

the limit as λ ↑ λ.

Optimal Voting Procedure. When parameter values are such that (A.14) holds, two-limb

aggregation is optimal since the series-by-series constraints have no bite. Yet another sufficient

condition for two-limb optimality is that the optimal uniform offer u∗ satisfies the series-by-

series constraints, in which case the unique advantage of single-limb aggregation is worthless.
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Applying Lemma 2 (see also Proposition 2), one can see that FH(u
∗) ≥ τ s2 if γ ≤ γU , where

γU is given by (A.11), or alternatively if

λ ≥ 1− τ1 − (1− τ s2)
γ

1− τ s2 − (1− τ s2)
γ
≡ ℓU(γ) ∈ (0, 1) for γ > γU , (A.19)

where one can check that the definition of ℓU ensures that u
(
ℓU(γ), τ1

)
= F−1

H (τ s2). It is worth

noting that Condition (A.19) can also be viewed as setting an upper bound on γ that is an

increasing function of λ, starting at γU for λ = 0 and going to infinity as λ ↑ (1− τ1)/(1− τ s2).

One can see that when τ1 = τ a2 , the functions ℓ−1
U and ℓ−1

X both have an asymptote at λ = λ,

whereas if τ1 > τ a2 the asymptote for ℓ−1
U is at a value of λ strictly below λ.

In order to exploit Proposition 3 and establish instead a sufficient condition for single-limb

optimality, we first need to find restrictions that ensure that w̃ ∈
(
F−1
L (τ1), F

−1
H (τ s2)

)
. It is

immediate to see from (A.10) that this amounts to finding γ > γU such that

− log(1− τ1) <
γ log γ

γ − 1
< −γ log(1− τ s2), (A.20)

and one can show (see Remark A-4 below) that these inequalities are satisfied for high values

of γ. For such values of γ, we know from Proposition 3 that single-limb voting is optimal for

λ sufficiently close to zero when τ1 = τ a2 , and in the neighborhood of

λ̃ =
1− τ1 − γ− γ

γ−1

(γ − 1)γ− γ
γ−1

, (A.21)

when τ1 − τ a2 is small, where one can check that the point λ̃ > 0 is such that u(λ̃, τ1) = w̃.

Remark A-4. To see that the inequalities in (A.20) are satisfied for high values of γ, first

note that − log(1 − τ) > 0 is increasing in τ , with − log(1 − τ) > 1 for τ > 1 − e−1 ≈ 0.63.

Since γ log γ/(γ − 1) is strictly increasing in γ, with limit 1 as γ ↓ 1 and going to infinity as

γ → ∞, the first inequality is satisfied for γ sufficiently large. Likewise, since log γ/(γ − 1)

is strictly decreasing in γ, with limit 1 as γ ↓ 1 and going to zero as γ → ∞, the second

inequality is also satisfied for γ sufficiently large.

Necessary and Sufficient Condition. When none of the sufficient conditions holds, the

participation constraint on bond H must be binding under two-limb voting, in which case the

optimal two-limb offers are given by (A.15)-(A.16). The restructuring cost is then given by

C2 = λϕH log

(
1

ζs2

)
+ (1− λ)ϕL log

(
1− λ

ζa2 − λζs2

)
,
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where ζj2 = 1 − τ j2 for j ∈ {s, a}. Under single-limb voting, the optimal uniform offer u∗ is

implicitly defined by

F (u∗) ≡ λFH(u
∗) + (1− λ)FL(u

∗) = 1− λe−u∗/ϕH − (1− λ)e−u∗/ϕL = τ1,

and the total cost for the government is C1 = u∗ = F−1(τ1). Therefore, single-limb aggregation

is optimal if and only if F−1(τ1) < C2, which is equivalent to F (C2) > τ1. We thus obtain a

necessary and sufficient condition for single-limb optimality in terms of parameter values:

λ (ζs2)
λ

(
ζa2 − λζs2
1− λ

) 1−λ
γ

+ (1− λ) (ζs2)
λγ

(
ζa2 − λζs2
1− λ

)1−λ

< 1− τ1. (A.22)

Remark A-5. In the limit as γ → ∞, Condition (A.22) boils down to

λ (1− τ s2)
λ < 1− τ1.

It is easy to check that the left-hand side is strictly increasing in λ ∈ (0, 1) if τ s2 ≤ 1− e−1 ≈
0.63, in which case there is a unique λ∞ such that λ (1− τ s2)

λ = 1− τ1. In the limit as γ goes

to infinity, two-limb dominates for λ greater than λ∞.

A.4 Derivations for Section 5

Reservation Value Distributions. In the equilibrium described in Section 5.3 and under

the stated parametric restrictions, market clearing requires that r̂ = rmin + λLR, where R ≡
rmax − rmin denotes the length of R. The reservation values for the two bonds lie in

VL =

[
cL

r̂ + δL + χ
,

cL
rmin + δL + χ

]
=: [wL, wL] ,

VS =

[
cS

rmax + δS + χ
,

cS
r̂ + δS + χ

]
=: [wS, wS] .

Using the notations {ai, bi}i∈{S,L} defined in the text by (26), one can check that wi = bi/ai,

and wi = bi/(ai − 1). For w ∈ VL, we have

Pr
(
hL(r) ≤ w

∣∣ r ≤ r̂
)
=

G(r̂)−G(cL/w − (δL + χ))

λL

=
rmin + λLR + δL + χ

λLR
− cL

λLR

1

w
.

Likewise, for w ∈ VS, we can write

Pr
(
hS(r) ≤ w

∣∣ r ≥ r̂
)
=

1−G(cS/w − (δS + χ))

λS

=
R + δS + χ+ rmin

λSR
− cS

λSR

1

w
.
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Hence, using the notations {ai, bi}i∈{S,L}, the CDFs for the two bonds can be written as

Fi(w) =





0 if w < wi,

ai − bi/w if w ∈ Vi,

1 if w > wi, i ∈ {S, L}.

Auxiliary Problem and Two-Limb Offer. The auxiliary problem is

min
wS , wL

λSwS + λLwL subject to λSFS(wS) + λLFL(wL) = τ a2 ,

and we denote its solution by ŵ = (ŵS, ŵL). In particular, when ŵ ∈ int(VS) × int(VL), the

first-order optimality condition (15) implies that

ŵS =
λSbS

λSaS + λLaL − λL
bL
ŵL

− τ a2
and ŵL =

λSbS

√
bL
bS

+ λLbL

λSaS + λLaL − τ a2
, (A.23)

which, after substituting the expressions for {ai, bi}i∈{S,L}, yields

ŵS =
cS

(√
cL
cS

λ
1−λ

+ 1
)

(λ− τ a2 )R + rmax + rmin + δS + δL + 2χ
,

ŵL =
cL

(√
cS
cL

1−λ
λ

+ 1
)

(λ− τ a2 )R + rmax + rmin + δS + δL + 2χ
.

As in Section 2.2, the optimal two-limb offer coincides with the auxiliary solution ŵ when the

latter satisfies the series-by-series constraint for both bonds.

Single-Limb Offer. Let F (w) = λSFS(w) + λLFL(w) denote the aggregate consent share

associated with uniform offer w, with F ′(w) ≥ 0. The optimal single-limb offer is given by

u∗ = inf
{
w ≥ 0

∣∣ F (w) = τ1
}
.

In particular, for parameter values such that

λS ∈
[
tS + cS

cL
(Rτ1 − tL)

R
,
tL + cL

cS
(Rτ1 − tS)

R

]
,

where ti = rmax + δi + χ, one can show that

u∗ =
λLbL + λSbS

λLaL + λSaS − τ1
=

cL + cS
(λ− τ s2)R + rmax + rmin + δS + δL + 2χ

∈ VS ∩ VL.
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B Extension with Stochastic Consent Shares

This appendix extends the analysis of the two-bond case presented in Sections 2 and 3 to

consider a situation where the government faces some uncertainty on the consent shares that

a given restructuring offer may attract. We first consider a general formulation of the govern-

ment’s problem in the presence of uncertainty, and then provide a parametric example.

Assumptions. We proceed under the following assumptions. First, the share of consent

among the holders of each bond is a random variable, whose distribution depends on the

recovery rate offered to that bond. For now, we leave this distribution and its dependence on

the government’s offer unspecified, and allow for the possibility that consent shares may be

correlated across bonds. Second, we assume that, if one or more series cannot be restructured

through the activation of CACs, the bonds of these series are left unrestructured (i.e., the

minimum participation thresholds is no smaller than the CAC thresholds) and the government

incurs a pecuniary cost Z per unit of face value of the unrestructured series.

Under single-limb aggregation, the presence of a unique constraint implies that either

both bonds are restructured, or none of them is. Under the two-limb procedure, there is the

possibility that the consent shares satisfy both the aggregate constraint and the series-by-series

constraint for one bond, but not that for the other bond. In this case, we assume the presence

of a redesignation clause, implying that the latter bond drops out of the restructuring pool

and is left unrestructured, while the former is restructured through the triggering of CACs.

Notation. We denote by τ ≡ (τ a2 , τ
s
2) the pair of thresholds under the two-limb procedure. To

formulate the problem of the sovereign in the presence of uncertainty, we denote by pa(w, τ)

the probability that a restructuring offer w = (wH , wL) attracts an aggregate consent share

above the generic aggregate threshold τ , with pa(u, τ) ≡ pa((u, u), τ); we denote by pHL(w, τ )

the probability that the offer w attracts consent shares that satisfy all constraints under the

two-limb voting rule, i.e. both the series-by-series constraints and the aggregate constraint;

and we denote by pi(w, τ ) the probability that only bond i is restructured via redesignation

under two-limb, i.e. the aggregate constraint and the series-by-series constraint for bond i are

satisfied, but the series-by-series constraint for bond j ̸= i is not satisfied. The probability

that both bonds are left unrestructured under the two-limb procedure is

p0(w, τ ) ≡ 1− pHL(w, τ )−
∑

i

pi(w, τ ).

Government’s Problem. Let λ = (λH , λL) denote the relative sizes of the two bonds. The

cost-minimization problem of the government under two-limb aggregation is given by

E[C2] = min
w

{
pHL(w, τ ) (λ ·w) +

∑

i

pi(w, τ )
(
λiwi + (1− λi)Z

)
+ p0(w, τ )Z

}
.
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Instead, under the single-limb procedure, the government’s problem is given by

E[C1] = min
u

{
pa(u, τ1)u+

(
1− pa(u, τ1)

)
Z
}
.

Special Case. In one particular specification of the model with stochastic consent shares,

an offer wi to bond i attracts a consent share Fi(wi)− νi, where the noise terms (νH , νL) are

distributed according to the multivariate standard normal distribution

[
νH

νL

]
∼ N (µ,Σ) , where µ =

[
0

0

]
, Σ =

[
σ2 ρ σ2

ρ σ2 σ2

]
.

It immediately follows that the expected consent shares are given by E[Fi(wi)− νi] = Fi(wi).

Under this specification, the aggregate consent share is
∑

i λi(Fi(wi)− νi), implying that

pa(w, τ) = Φ

( ∑
i λiFi(wi)− τ

σ
√

λ2
H + λ2

L + 2ρ λH λL

)
. (B.1)

Under two limb, all consent requirements are satisfied when the following conditions hold:

Fi(wi)− τ s2 ≥ νi,

Fj(wj)− τ s2 ≥ νj,

Fi(wi) +
λjFj(wj)− τ a2 − λjνj

λi

≥ νi,

for i, j ∈ {H,L}, j ̸= i. Instead, the restructuring only includes bond i and leaves bond j

unrestructured in case the second inequality is reversed. It follows that

pHL(w, τ ) = Pr

(
νi ≤ min

{
Fi(wi)− τ s2, Fi(wi) +

λjFj(wj)− τ a2 − λjνj
λi

}
∧ νj ≤ Fj(wj)− τ s2

)
,

pi(w, τ ) = Pr

(
νi ≤ min

{
Fi(wi)− τ s2, Fi(wi) +

λjFj(wj)− τ a2 − λjνj
λi

}
∧ νj > Fj(wj)− τ s2

)
.

Remark. We use the above additively separable specification to have simple expressions,

even though it implies that consent shares can in principle lie outside the unit interval. This

can be readily fixed by assuming that consent shares are instead given by

F̂a(w) = min

{
max

{∑

i

λi

(
Fi(wi)− νi

)
, 0

}
, 1

}
,

F̂i(w) = min{max{Fi(wi)− νi, 0}, 1}.

This formulation delivers probabilities pa, pi, pHL that are identical to those specified above,

but at the cost of more involved expressions.
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Illustration. We now illustrate the results of the model assuming that the expected consent

share functions Fi are as per (20), with the same parameters (ϕL, ϕH , γ) as the ones set in

Section 3.2. The CAC thresholds are τ1 = τ a2 = 2/3 and τ s2 = 1/2, and the cost of leaving a

bond unrestructured is Z = 7. Figures B.1-B.3 illustrate comparative statics with respect to

the relative size (λ) of the expensive bond H, the uncertainty about consent shares (σ), and

their correlation (ρ), respectively. Unless specified otherwise, we set σ = 0.05 and ρ = 0.

In each figure, the top left panel depicts restructuring offers under two-limb voting (dashed

red for bondH and dash-dotted blue for bond L) and the uniform offer under single-limb voting

(dotted black). The top right panel depicts, for each aggregation method, the expected consent

shares for each bond, along with the expected aggregate consent share (with the solid orange

line corresponding to the expected aggregate consent under two-limb voting). The bottom

right panel depicts as a dotted black line the probability pa(u
∗, τ1) that the restructuring

goes through under single-limb, and as a solid orange line the probability pHL(w, τ ) that the

activation of CACs allows the restructuring of both bonds under two-limb voting, as well as

the probabilities pi(w, τ ) that only bond i = H,L is being restructured. Finally, the bottom

left panel depicts the expected restructuring costs E[C2] and E[C1] under the two-limb and

single-limb procedures (solid orange and dotted black lines, respectively).
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Figure B.1: Comparative Statics with Respect to λ.
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Figure B.1 demonstrates that the findings illustrated in Figure 1 on the optimal restruc-

turing approach generalize to a setting where the government faces uncertainty about consent

shares. Optimal offers under either aggregation method are increasing in the share of the

more demanding bond. In the presence of uncertainty, offers are made to ensure that, in

expectation, consent shares are comfortably above the required thresholds, yet leaving the

possibility that some bond(s) may be left unrestructured. For low values of λ, the optimal

uniform offer under single limb is expected to attract from bond H a consent share below

the series-by-series threshold τ s2, whereas the optimal offer to this bond under two limb is

sufficiently generous to ensure that, in all likelihood, the series-by-series requirement will be

met. For low values of λ, the unique advantage of single-limb voting thus makes it optimal.

Naturally, as illustrated in the top-left panel of Figure B.2, restructuring offers—as well

as expected consent shares—are increasing in the degree of uncertainty. As σ ↓ 0, offers can

be tailored to just meet each of the consent requirements as an equality. When instead there

is some amount of uncertainty, offers are made more generous to guarantee a wider comfort

margin. Despite the optimal offers being more generous, an increase in uncertainty lowers

the probability of a smooth restructuring. The bottom left panel of the figure reveals that an

increase in uncertainty is favorable to the use of two-limb aggregation.
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Figure B.2: Comparative Statics with Respect to σ, for λ = 0.3.
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Figure B.3 illustrates the impact of the correlation of shocks to consent shares on the

optimal restructuring approach. One may think of this correlation as being driven (at least

partly) by the extent to which some creditors are common across the bonds. As can be seen

from Equation (B.1), holding everything else constant, an increase in ρ lowers the probability

of reaching a given aggregate threshold. Under single limb, despite a slight upward adjustment

in the uniform offer, an increase in ρ is accompanied by an approximately linear drop in the

likelihood of a smooth restructuring. Under two-limb voting, the drop is less pronounced and

the probability pHL of a smooth restructuring even reverts back up for high values of ρ due

to the adjustment in the government’s offers. Overall, an increase in the correlation of shocks

to consent shares contributes to making the two-limb procedure more appealing.
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Figure B.3: Comparative Statics with Respect to ρ, for λ = 0.25.

Finally, Figure B.4 generalizes and extends the results from Sections 2 and 3 on the de-

terminants of the optimal aggregation method. Consistent with Figure 2 (left panel, for

τ1 = τ a2 = 2/3), even in the presence of shocks, the single-limb procedure is found to be

optimal only when there is substantial heterogeneity across bonds and the more demanding

bond is relatively small. Moreover, consistent with the insights from Figures B.2 and B.3, an

increase in uncertainty and in the correlation of shocks on consent shares are both favorable

to the use of two-limb aggregation.
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Figure B.4: Optimal Aggregation Method as a Function of Relative Size (λ) and Bond Heterogeneity
(γ), for Different Levels of Volatility (σ) and Correlation (ρ) of Shocks to Consent Shares.
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