CREDITOR HETEROGENEITY AND THE OPTIMAL USE OF ENHANCED COLLECTIVE ACTION CLAUSES

Carlo Galli Stéphane Guibaud UC3M SciencesPo

> DEBTCON5 Florence, May 26th 2022

INTRODUCTION

Collective Action Clauses (CACs)

- key pillar of sovereign debt architecture
- in a restructuring, supermajority of consenting creditors can bind dissenting minority

Within a restructuring of multiple bonds, can choose among 3 voting/threshold rules

- Series-by-series: within-bond ($\approx 75\%$)
- Two-limb: across-bonds ($\approx 66.6\%$) and within-bond ($\approx 50\%$)
- Single-limb: across-bonds ($\approx 75\%$) + uniform applicability constraint

ENHANCED CACS IN THEORY AND PRACTICE

Single-limb voting rule

- most recent innovation, introduced with 2014 ICMA Model CACs
- belief that it would become most effective procedure
- Eurozone 2022 Model CACs include single-limb only

Argentina & Ecuador 2020 debt restructurings

- Enhanced CACs tested in practice for the first time
- both opted for two-limb aggregation
- both offered different bonds to holders of different bond series

This Paper

- An theoretical analysis of Enhanced CACs in restructurings of multiple bonds
- Consider **heterogeneity**
 - within each bond
 - across bonds

(e.g. expected litigation cost/outcome, discount rates, preferences, coupon rates, maturities)

• Characterise optimal voting rule for the debtor government

Environment

Restructuring pool $\rightarrow 2$ bonds

- "expensive" bond H, relative weight λ
- "cheap" bond L, relative weight 1λ

Bondholders

- atomistic
- assign *idiosyncratic* reservation value v to holding out of the bond exchange
- holders of bond i have reservation values distributed according to CDF ${\cal F}_i$

Exchange offer

- government makes offer w_i to holders of bond i
- creditor accepts if $w_i \ge v$
- share of consent within bond i is given by $F_i(w_i)$

CREDITOR-BOND HETEROGENEITY

Holders of bond H have higher reservation values, that is

 $F_H(w) < F_L(w)$ for any w

 \rightarrow i.e., bond H has better payment terms, holders have better litigation skills, ...

GOVERNMENT PROBLEM

• Objective function = restructuring payout

$$\min_{w_H, w_L} \lambda w_H + (1 - \lambda) w_L$$

- Participation constraints, depending on the voting rule
 - Two-limb

$$\lambda F_H(w_H) + (1 - \lambda) F_L(w_L) \ge \tau_2^{\mathrm{a}}$$
$$F_i(w_i) \ge \tau_2^{\mathrm{s}} \qquad \text{for } i \in \{H, L\}$$

- Single-limb

$$w_H = w_L = w$$
 (uniform applicability)
 $\lambda F_H(w) + (1 - \lambda)F_L(w) \ge \tau_1$

VOTING RULES

- What about creditors with large, possibly blocking positions?
 - would be mass points of bondholder distribution in our framework
 - as long as position $< 1 \tau$, can model it as higher *effective threshold*

• We assume

 $\tau_2^{\rm s} < \tau_2^{\rm a} \le \tau_1$

SINGLE-LIMB OFFER

• Cost-minimising offer for the government

 $\lambda F_H(w_1^*) + (1-\lambda)F_L(w_1^*) = \tau_1$

• Total government cost

$$\mathcal{C}_1 = w_1^*$$

• Remark

$$F_H(w_1^*) < \tau_1 < F_L(w_1^*)$$

SINGLE-LIMB OFFER

• Cost-minimising offer for the government

$$\lambda F_H(w_1^*) + (1 - \lambda)F_L(w_1^*) = \tau_1$$

• Total government cost

$$\mathcal{C}_1 = w_1^*$$

• Remark

$$F_H(w_1^*) < \tau_1 < F_L(w_1^*)$$

TWO-LIMB OFFER

• Government problem

 $\min_{w_H,w_L} \quad \lambda w_H + (1-\lambda)w_L$

subject to

$$\lambda F_H(w_H) + (1 - \lambda) F_L(w_L) = \tau_2^{\mathrm{a}}$$

$$F_i(w_i) \ge \tau_2^{\mathrm{s}}, \qquad i = H, L$$

• Optimal offers (w_H^*, w_L^*)

• Total government cost

$$\mathcal{C}_2 = \lambda w_H^* + (1 - \lambda) w_L^*$$

TWO-LIMB OFFER

TWO-LIMB OFFER

KEY TRADE-OFFS

Single-limb (as compared to two-limb)

- Advantage: removes the series-by-series constraint
 - most relevant when *H*-bond share is small (low λ)
 - \Rightarrow very different contribution of F_H to aggregate vs series-by-series constraint
- Drawback: adds uniform applicability, possibly higher aggregate threshold (if $\tau_2^a < \tau_1$)
 - can't price-discriminate
- \Rightarrow both channels are stronger when creditor heterogeneity \uparrow

Optimal Voting Rule

Assuming

•
$$F_i(w) = 1 - e^{w/\phi_i}, \phi_H = 0.7, \phi_L = 0.2$$

• $F_L^{-1}(\tau_1) = 0.22, F_H^{-1}(\tau_1) = 0.77$

$\begin{array}{l} \text{Optimal Voting Rule} \\ \tau_1 > \tau_2^a \end{array}$

TAKEAWAYS AND AGENDA

Takeaways

- we provide a economic theory of the optimal use of Enhanced CACs
- results depend on degree of bond & creditor heterogeneity

A lot more to be done with this framework:

- quantitative analysis of ARG and ECU restructurings through the lens of our model
- optimal bond pool designation
- uncertainty over participation rates

and taking a step back

- endogenous investor sorting into bonds (i.e. endogenous F_i and λ_i)
- endogenous government bond issuance/maturity structure